
Guidance to students 

You should read the article and the first 2–3 pages of Supplementary information. It’s 
okay to skip the rest of supplementary. Please learn how the TF-QKD scheme and 
protocol works. 

We will discuss the following three questions in the classroom: 

– In Fig. 1a, there are several curves. Explain their shape. In particular: What is the slope of the 
curves I through IV and what physical effect determines their slope? What is the slope of the 
“single-repeater bound” and why is it exactly half as steep as the previous curves? Why is the 
“ideal TF-QKD” curve of the same slope but located below? Why does the “TF-QKD” curve 
drop abruptly at the end? 

– Why is randomly modulating the phase and splitting the phase space into 16 segments 
performed in TF-QKD? The segments only match between Alice and Bob with the probability 
of 1/16 and create some errors in the key even when they match, which significantly reduces 
the key rate. Wouldn’t we get more frequent and more accurate matches and a higher key rate 
if we used fewer phase values at Alice and Bob, e.g., four discrete values like in the standard 
BB84 protocol? 

– What is the main experimental difficulty in implementing TF-QKD? What is demonstrated 
in the experiment reported in this article? 
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Quantum key distribution (QKD)1,2 allows two distant parties 
to share encryption keys with security based on physical laws. 
Experimentally, QKD has been implemented via optical means, 
achieving key rates of 1.26 megabits per second over 50 kilometres of 
standard optical fibre3 and of 1.16 bits per hour over 404 kilometres 
of ultralow-loss fibre in a measurement-device-independent  
configuration4. Increasing the bit rate and range of QKD is a 
formidable, but important, challenge. A related target, which is 
currently considered to be unfeasible without quantum repeaters5–7, 
is overcoming the fundamental rate–distance limit of QKD8. This 
limit defines the maximum possible secret key rate that two parties 
can distil at a given distance using QKD and is quantified by the 
secret-key capacity of the quantum channel9 that connects the 
parties. Here we introduce an alternative scheme for QKD whereby 
pairs of phase-randomized optical fields are first generated at two 
distant locations and then combined at a central measuring station. 
Fields imparted with the same random phase are ‘twins’ and can 
be used to distil a quantum key. The key rate of this twin-field 
QKD exhibits the same dependence on distance as does a quantum 
repeater, scaling with the square-root of the channel transmittance, 
irrespective of who (malicious or otherwise) is in control of the 
measuring station. However, unlike schemes that involve quantum 
repeaters, ours is feasible with current technology and presents 
manageable levels of noise even on 550 kilometres of standard 
optical fibre. This scheme is a promising step towards overcoming 
the rate–distance limit of QKD and greatly extending the range of 
secure quantum communications.

To introduce our scheme, we plot in Fig. 1a several conceptual bounds 
for the rate–distance dependence of QKD, under ideal experimental 
conditions (see parameters in the inset). Lines I–IV represent the key 
rates of quantum schemes obtained without resorting to a quantum 
repeater5–7; they are therefore denoted ‘repeaterless bounds’. Line IV, in 
particular, is the secret-key capacity (SKC) of an optical quantum chan-
nel with losses9, which quantifies the maximum amount of secret infor-
mation that can be transmitted in QKD8. On the experimental side, the 
key rates that can be achieved currently are represented by red symbols. 
They show a similar dependence on distance to that of the repeaterless 
bounds, but with lower key rates, owing to source and detector losses 
and other experimental imperfections. This highlights a limitation of 
existing QKD schemes—they can never surpass the SKC bound.

With the aid of a quantum repeater5–7, it would be possible to over-
come this barrier. However, despite recent advances10–13, such a device 
remains difficult to realize. One of the simplest versions, tailored for 
intercity distances13, avoids using quantum memories and quantum 
error correction, but still requires non-demolition measurements, 
conditional optical switches and the multiplexing of a large number 
of single photon sources, all of which is far from trivial to implement. 
As a result, there is yet to be an experimental realization of a scheme 
that surpasses the SKC barrier. Although a trusted-node network14 and 
the use of satellites15 can greatly extend the reach of quantum commu-
nications, they do not exceed the SKC barrier. In the former case, the 
information ceases to be quantum at each intermediate node. For the 

latter, outer space provides a low-loss propagation medium, but the key 
rate per loss unit remains unchanged.

On the other hand, the scheme presented here can overcome the 
point-to-point SKC9. This is demonstrated in Fig. 1a, in which we anti
cipate the twin-field QKD (TF-QKD) key rates (thick lines). The ideal 
TF-QKD (dashed line) overcomes the repeaterless bounds after 200 km 
of standard optical fibre (lighter-pink shaded area). Even when realistic 
parameters are considered (solid line), TF-QKD can surpass the ideal 
repeaterless bound after 340 km of optical fibre (darker-pink shaded 
area). The gradient of the TF-QKD key rates resembles that of a single 
quantum repeater connecting two end points16 (also plotted in Fig. 1a). 
Whereas the key rate of conventional QKD scales linearly with the 
channel transmittance η when η � 1, that of TF-QKD scales with η1/2, 
thus markedly improving the rate–distance figure. Although a rigorous 
proof of the key rate unconditional security is beyond the scope of this 
paper, this change in the loss dependence constitutes a fundamental 
advance in QKD.

In TF-QKD, dim optical pulses are generated by two light sources, 
which are phase-randomized and then phase-encoded with secret 
bits and bases. The pulses are sent to interfere17 on the beam splitter of 
an intermediate station, ‘Charlie’, who could even be a malicious party. 
Depending on which detector clicks, Charlie can infer whether the 
secret bits of the users (Alice and Bob) are equal (00 or 11) or different 
(01 or 10), but cannot learn their absolute values (0 or 1). This feature 
guards the scheme against eavesdropping, in a manner similar to phase-
based measurement-device-independent (MDI) QKD18,19. However, 
TF-QKD also uses phase randomization and decoy states20–22 to extend 
the distance of quantum communications considerably. This, in turn, 
resembles decoy-state MDI-QKD23. In decoy-state MDI-QKD, the users 
send two photons, one each, to the central station to cause a two-photon 
interference followed by a coincidence count in Charlie’s detectors. In 
TF-QKD, on the other hand, they send two optical fields, to produce a 
single-photon interference followed by a single-photon detection event. 
This lets TF-QKD retain the MDI characteristic, while gaining the 
square-root dependance of the key rate on the channel transmittance. 
Moreover, this method provides an advantage over MDI-QKD even at 
short distances when Charlie’s detectors have low efficiency.

As depicted in Fig. 1b, TF-QKD adopts the same components as 
decoy-state MDI-QKD, so it can readily be implemented. However, it 
requires the coordinated phase randomization of the twin fields. This 
randomization is initially performed by Alice and Bob independently 
of each other, by picking phase values ρa (Alice) and ρb (Bob) at random 
in the semi-open interval [0, 2π), in a manner similar to what has been 
suggested for the error-correction routine of MDI-QKD24. The phase 
interval is split into M phase slices Δk = 2πk/M, with k = {0, …, M − 1} 
(see example in Fig. 1c), from which partial phase slices Δk(a) and Δk(b) 
are defined for Alice and Bob, respectively. The phase values that are 
picked randomly by the users necessarily fall in one of the phase slices. 
To identify the twin fields, the users publicly reveal Δk(a,b) together with 
the preparation bases. They keep only the runs with matching values 
and discard all of the others. This means that ρa and ρb will always 
differ by less than 2π/M for a pair of twin fields and that there will be 
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an intrinsic quantum-bit error rate (QBER) EM due to the twins being 
close but not exactly identical. On average, this QBER will be
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which tends to zero for M → ∞. However, the probability of matching 
two phase slices scales with 1/M. As a consequence, there is an optimal 
M that guarantees the best performance. We ran a realistic simulation 
to maximize the darker-pink-shaded area in Fig. 1a and obtained an 
optimal value of Mopt = 16, which corresponds to = .E 1 275%Mopt

.
In Fig. 2 we relate our scheme to conventional QKD. We first  

represent the typical interferometer for a phase-encoded QKD set-up 
(Fig. 2a). The light source generates a coherent state ∣ ⟩μρei , with μ 
the intensity and ρ the electromagnetic phase that carries the ‘global 
phase information’. The phase ρ is uniformly random and the actual 
state averaged over repeated runs is
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where pn|μ = e−μμn/n! is the (Poisson) probability of emitting n  
photons when a state with intensity μ is prepared. When the tagging 
argument25 is applied to the efficient BB84 protocol26 endowed with 
decoy states, the key rate of QKD in the asymptotic scenario is22

μ = | − | −μ μ μ μR L Q h e fQ h E( , ) [1 ( )] ( ) (2)L L L LQKD 1 , 1 , , ,

In this equation we have explicitly written, for later convenience, the 
dependence on the total intensity μ and on the distance L between Alice 
and Bob. = μ|Q p y

1 1 1
 is the lower bound for the single-photon gain; y

1
  

and e1 are the lower bound for the single-photon yield and the upper  
bound for the single-photon phase-error rate, respectively, estimated 
using the decoy-state technique; Q and E are the gain and the QBER 
measured in the QKD session; f accounts for the efficiency of error 
correction; and h is the binary entropy.

As an intermediate step towards our scheme, the QKD interferometer 
(Fig. 2a) is unfolded (Fig. 2b). In this case, the two pulses travel on separate 
channels and are encoded separately with the same phase ρ. These are the 
twin fields that will interfere on Charlie’s beam splitter. The emitted state 
is unchanged from the previous scheme, as is the classical information 
disclosed, so the two schemes are equivalent from a security perspective.
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Fig. 1 | Scheme to overcome the rate–distance limit of QKD.  
a, Theoretical bounds (lines) and experimental results (symbols) for fibre-
based quantum schemes (details in Supplementary Information). To make 
a homogeneous comparison, all of the distances have been normalized to 
the length L of a standard optical fibre with an attenuation coefficient of 
α = 0.2 dB km−1. The theoretical bounds are: I, decoy-state MDI-QKD; II, 
decoy-state QKD; III, single-photon QKD; IV, SKC9. The single-repeater 
bound16 is also shown. The experimental results for QKD, continuous-
variable QKD and MDI-QKD are shown as squares, triangles and circles, 
respectively, and are numbered in chronological order. TF-QKD is the 
scheme described in this work. The solid (dashed) line respresents the 
realistic (ideal) TF-QKD key rate given in equation (3) and the darker-
pink (lighter-pink) shaded area is the region in which it overcomes the 
SKC. Inset, parameters used for numerical simulations: Pdc, dark-count 
probability; ηdet, total detection efficiency; eopt, optical error rate of the 

channel; f, error-correction coefficient. b, Set-up to implement TF-QKD. 
The light sources (LSs) at Alice’s and Bob’s stations generate pulses with 
intensities μa,b that are varied randomly by intensity modulators (IMs) 
to implement the decoy-state technique20–22. Phase modulators (PMs) 
are combined with random number generators (RNGs) to encode each 
light pulse with phases ϕa,b, which include bit and basis information as 
well as the random phases ρa,b (see text). The variable optical attenuators 
(VOAs) set the average output intensity of the pulses to bright (classical 
regime) or dim (quantum regime). The pulses travel along independent 
channels, acquiring phase noise δa,b, to then interfere on Charlie’s beam 
splitter and be detected by the single-photon detectors D0 and D1. Charlie 
uses the bright pulses in the classical regime and the phase modulator in 
his station to phase-align the dim pulses that are emitted in the quantum 
regime, which provide the bits of the key. c, Discretization of phase space 
to identify the twin fields during the public discussion.
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In Fig. 2c we present the TF-QKD scheme. The detectors have been 
outsourced to Charlie and the users’ stations have been separated, so 
that Bob’s station is now located at distance 2 L from Alice. The users’ 
lasers emit optical pulses that interfere17 on Charlie’s beam splitter. 
The pulses are encoded with random phases ρa,b, which will then be 
revealed to a finite precision through the public announcement of the 
phase slices Δk(a,b). This aspect is different from conventional QKD, in 
which the value of the global phase is never revealed.

The key feature of TF-QKD is the doubling of the distance between 
Alice and Bob for a given count rate. As can be seen from Fig. 2, the 
red and blue pulses each travel a distance L in both QKD and TF-QKD, 
thus producing the same count rate. However, whereas in QKD the 
pulses co-propagate from Alice to Bob, in TF-QKD they run from Alice 

and Bob towards Charlie, thus effectively increasing the transmission 
distance.

In Supplementary Information, we show that if revealing the global 
phase ρ after Charlie’s measurement does not contribute to the eaves-
dropper’s information, the key rate of TF-QKD can be expressed 
through equation (2), as
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However, the public disclosure of ρ, even after Charlie’s measurement, 
can leak information to the eavesdropper (Eve). In Supplementary 
Information, we consider a specific attack built on this leakage and 
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Fig. 2 | Schematics of the quantum distribution of encryption keys. 
The grey-shaded areas are inaccessible to the eavesdropper. a, Typical 
phase-based QKD set-up. A light source (LS) emits optical pulses with 
random global phase ρ. The primary pulse is split in two sub-pulses at 
the input of an asymmetric Mach–Zehnder interferometer. The pulse on 
the longer path (blue) acquires a phase γa with respect to the other pulse 
(red). The pulses are sent on a quantum channel of length L towards the 
receiving user (Bob), who owns a matched asymmetric Mach–Zehnder 
interferometer. After imparting a phase γb to the red pulse, Bob makes the 
two pulses interfere and measures them with the detectors D0 and D1.  
b, Unfolded QKD set-up. The common path of length L in a is now split 
into two separate paths of equal length L. The two secondary pulses 
travel on separate quantum channels to then interfere and eventually be 
detected by Bob. c, Scheme analysed in this work. Alice and Bob are both 
transmitters. Each of them is provided with one laser source and one 
interferometer arm. Alice (Bob) prepares an optical pulse with random 
phase ρa (ρb) and encoding phase γa (γb) and transmits it on the quantum 
channel. Charlie overlaps the input pulses on a beam splitter and measures 
them. After Charlie announces which detector clicked, the users announce 
the basis values in γa,b and the phase slices that contain ρa,b.
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Fig. 3 | Experimental characterization of phase drift and visibility.  
a, Experimental set-up. A light beam emitted by a continuous-wave laser 
is sent through the two arms of the interferometer. Polarization controls 
are used to set the correct polarization, which remains stable for a time 
much longer than the scale of the phase drift. Variable optical attenuators 
equalize the intensity of the fields that enter the interfering beam splitter. 
Two equal reels of single-mode optical fibre connect the preparation 
stage to the beam splitter and the detection stage, where a power meter 
(Keysight 7748 A) with a sampling rate of 40 kHz and power range between 

−110 dBm and 10 dBm is used to monitor the phase drift. b, Maximum 
visibility obtained in the experiment (blue) and phase drift rate (red) as 
function of the total fibre length L. The dashed line represents a qualitative 
fit that assumes a random-walk model for the phase drift. c, Measured 
phase drift (top, black) and related phase drift rate (bottom, red) in the 
longest-distance configuration of 550 km, obtained with two fibre spools 
of length 275 km each. The maximum visibility observed at this specific 
distance is 99.65%.
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show that the resulting key rate is lower, but still above the SKC at 
long distance. However, we stress that equation (3) does not cover the 
most general attack by Eve and that the analysis of general attacks is an 
outstanding challenge.

The notation ⊕EM in equation (3) prompts the intrinsic QBER of 
TF-QKD, EM, owing to its phase-randomization. The total intensity 
of the optical pulses is μ = μa + μb, with μa (μb) the intensity of the 
pulse emitted by Alice (Bob). The coefficient 1/M stems from sifting 
the phase slices, and d is the duty cycle between the classical and the 
quantum modalities, described below. Equation (3) makes it apparent 
that a distance L/2 in QKD corresponds to a distance L in TF-QKD.

The main technical challenge in implementing TF-QKD is con-
trolling the phase evolution of the twin fields, which travel hundreds of 
kilometres before interfering on Charlie’s beam splitter. The differential 
phase fluctuation between the two optical paths that link the users to 
Charlie can be written as

δ ν ν= π Δ + Δ
s

L L2 ( ) (4)ba

where s is the speed of light in the fibre. The first term arises from the 
frequency difference Δν between the users’ lasers and can easily be 
compensated using the phase-locking techniques27 that are routinely 
used in optical communications28. With a feasible value29 of Δν < 1 Hz, 
the phase uncertainty would be about 0.01 rad over 300 km of fibre, 
negligibly contributing to the QBER. The second term represents a 
more serious impairment. During propagation in the very long fibres, 
the twin fields travel different paths, so their relative phase will vary. 
The phase drift of a fibre-based Mach–Zehnder interferometer with 
36.5-km-long arms was previously30 characterized to be around 
0.3–1 rad ms−1.

To determine the phase drift over much longer fibres, we used 
the experimental set-up shown in Fig. 3a. The presence of a single 
laser assures that Δν = 0 in equation (4), thus letting us measure 
only the noise due to the fluctuations in the channel. The meas-
ured phase drift rate follows a Gaussian distribution with zero mean 
and a standard deviation equal to 2.4 rad ms−1 at a total distance of 
100 km and 6.0 rad ms−1 at the longest distance of 550 km (Fig. 3b, c). 
Compensating the phase drift would require bright pulses and active 
feedback, realized by Charlie acting on his phase modulator (details 
in Supplementary Information). In Fig. 3b we also show the visibility 
measured as a function of the fibre length. The visibility remains above 
99.65% for all distances, thus causing a negligible 0.175% contribution 
to the QBER due to a loss of coherence along the fibre.

Our findings suggest that the point-to-point SKC of a quantum chan-
nel can be overcome without using quantum repeaters, with a scheme 
that borrows components and techniques from ordinary QKD. This is 
not at variance with existing results8,9, because TF-QKD is not a point-
to-point scheme. As in MDI-QKD, the security of the scheme described 
here does not depend on the measurement devices. At the same time, 
the single-photon nature of our scheme results in count and error rates 
similar to those for standard QKD. Further work is necessary to prove 
the unconditional security of the scheme. We expect that this and the 
counter-intuitive features of TF-QKD will stimulate further research 
to extend the limits of QKD.

Data availability
All data generated and analysed during this study is available from the 
corresponding author on reasonable request.
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Supplementary Information

“Overcoming the rate-distance barrier of quantum key
distribution without using quantum repeaters”

Fibre-based experiments

All the experiments represented in Fig. 1a are numbered in chronological order. The correspondence
between numbers and references (following in square brackets) is: 1→ [31]; 2→ [32]; 3→ [33]; 4→ [34];
5 → [35]; 6 → [36]; 7 → [37]; 8 → [38]; 9 → [3]; 10 → [39]; 11 → [40]; 12 → [41]; 13 → [42]; 14 → [4];
15→ [43]; 16→ [44].

Protocol

0 . Initial operations – The phase interval [0, 2π) is split into M = 16 equal slices ∆k = 2πk/M , with
k = {0, ...,M − 1}. An authenticated channel is set up for the public announcements made by the
legitimate users Alice and Bob.

1 . Classical stage – The users send bright unmodulated optical pulses to the relay station, to let Charlie
stabilise the communication channels and in particular minimise the phase misalignment δba = δb−δa.

2 . Quantum stage – The users attenuate the optical pulses to the single-photon level and modulate
their phase and intensity.

3 . Preparation – Alice and Bob select random values for the intensities µa,b ∈ {u/2, v/2, w/2}; the bit
phases αa,b ∈ {0, π}, corresponding to the bits {0, 1}, respectively; the basis phases βa,b ∈ {0, π/2},
corresponding to the bases {X,Y }, respectively; and the phases ρa,b ∈ [0, 2π). They record in which
phase slice ∆k(a) (Alice) or ∆k(b) (Bob) their values ρa and ρb fall into. They then prepare pulses
with intensities µa,b and phases ϕa,b = (αa,b + βa,b + ρa,b)⊕ 2π and send them to Charlie.

4 . Charlie’s measurement and announcement – Charlie interferes the incoming pulses and records which
detector clicks. When the quantum communication is over, he publicly announces all the runs where
his detector 0 (1) clicked; Alice and Bob will correspondingly set a variable χ equal to 0 (π). All the
runs where none of or both of his detectors clicked are discarded.

5 . Users’s announcement and sifting – After the previous step is complete, Alice announces the intensi-
ties µa, the basis phases βa and the phase slices ∆k(a) and Bob announces the runs where his values
match Alice’s. The users discard all the mismatched runs. Then they disclose the bit values of the
matched runs except those in basis X and intensity class u, which are kept secret.

6 . Raw key bit distillation and parameter estimation – The users perform a coordinated random per-
mutation of the bits. For the bits in basis X and intensity class u, Bob draws Alice’s bit phase αa
from the relation χ = |αb − αa|. The users can then distill a key bit equal to 0 (1) when αa = 0
(π). A raw key is formed by concatenating these bits. All the remaining bits, fully disclosed in the
previous step, are used to perform the decoy-state parameter estimation and test the channel against
the presence of Eve.

7 . Post-processing – The users run classical post-processing procedures such as error correction and
privacy amplification to distil the final secure key from the raw key.

Table S1 – TF-QKD protocol.

In Table S1 we list the steps of the TF-QKD protocol. For definiteness, we specialise it to the case with
M = 16 and we consider the realistic setting where the decoy-state technique is implemented with three
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levels of intensity. The generalisation to a different number of phase slices or of intensity settings is
straightforward.

We use the symbol “⊕2π” for “addition modulo 2π”, which is used to map a generic phase value to
the interval [0, 2π). As in the rest of the paper, we use the compressed subscript notation xa,b to indicate
xa, xb, the first label referring to Alice and the second to Bob. Following Fig. 1b, we denote δa and δb the
noise variables associated with a phase misalignment of Alice’s and Bob’s optical pulses when interfering
on Charlie’s beam splitter. Misalignment might be due to the different emission spectra of the lasers or
to the propagation of the pulses through different fibres. All the public communications effected by the
users are assumed to be authenticated.

Active feedback

From Eq. (4) in the main text and from the TF-QKD protocol given in Table S1, we describe the phase
drift due to the channels’ length fluctuation as δba = δb−δa = 2πν∆L/s. To compensate this phase drift,
Charlie can use an active feedback routine based on the bright pulses received by Alice and Bob during
the classical stage (step 1 of the TF-QKD protocol). The reference bright pulses are unmodulated, so
Charlie can act on his phase modulator (PM in Fig. 1b) until he minimises (maximises) the counts in his
detector 0 (1). The bright pulses can be time-multiplexed with the quantum signals in bursts, to avoid
the detrimental effect of the Raman scattering. For simplicity, we assume a duty cycle between quantum
and classical optical pulses equal to d = 50%, which is the value adopted in the numerical simulations.
The compensation mechanism would never be perfect and any amount of uncompensated phase drift δba
would increase the channel optical error rate eopt = sin2(δba/2). In the numerical simulation of Fig. 1a
we assumed eopt = 3%, which holds if δba ≤ 0.35 rad. The worst-case phase drift rate is obtained for
the longest-distance configuration (550 km of standard optical fibre) and amounts to 6.0 rad/ms. This is
equal to 0.3 rad per 50 µs, showing that a feedback every ∼ 50 µs would suffice to compensate the phase
drift. With a clock rate of 1 GHz, a total 5 × 104 reference pulses can be distributed in this amount of
time. The intensity of these reference pulses can be chosen such that they produce about 1,000 counts in
Charlie’s detectors, which is enough to estimate the phase drift angle and correct it using a fast actuator
on Charlie’s phase modulator.

Numerical simulations

For all the simulated rates we set the clock rate equal to 1 GHz. The theoretical curves a− d in Fig. 1a
have been labelled starting from the lowest key rate-vs-distance figure. To draw these curves, we have set
η = 10−αL/10, with α = 0.2 dB/km the linear attenuation of a standard optical fibre and L the distance.
These curves and the one pertaining to the ideal TF-QKD have been obtained under ideal conditions,
i.e., with zero detector and channel noise, maximum detection efficiency (ηdet = 100%) and unitary error
correction efficiency (f = 1). The explicit key rate equations used to draw the lines in Fig. 1a are:

◦ Single-repeater bound16 (solid line on top): R1rep = − log2(1−√η).

◦ Secret key capacity9 (line d): RSKC = − log2(1 − η). This expression improves the previous upper
bound8 RSKC ≤ − log2[(1− η)/(1 + η)], closing the gap with the best-known lower bound,45 and is a
strong converse rate.46

◦ Single-photon QKD (line c): RspQKD = η. Starting from the Shor-Preskill key rate for the BB84
protocol,47 we set the QBER equal to zero and consider the efficient BB84 protocol,26 which has a
basis sifting factor asymptotically equal to 1.

◦ Decoy-state QKD (line b): RdsQKD = η/e, with e the Euler’s number. Starting from the asymptotic
key rate of the BB84 protocol with infinite decoy states,22 we set the QBER as in the previous case
and consider the efficient BB84 protocol.26 Hence the key rate coincides with the single-photon gain
Q1 = η (µe−µ). The term in brackets is the Poisson probability that a coherent state with intensity µ
contains 1 photon, which is maximised by µ = 1.
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◦ Decoy-state MDI-QKD (line a): RdsMDI = η/(2e2). Starting from the decoy-state MDI-QKD rate
equation,23 we set the QBER equal to zero and consider an efficient version of MDI-QKD, where
the basis sifting factor is ≈ 1. Then the rate coincides with the double-single-photon gain Q11 =
ηaηb (µae

−µaµbe
−µb) /2 (see also, e.g., Ref. [48]). The term in brackets is the multiplication of two

independent Poisson probabilities for the emission of 1 photon, maximised by µa = µb = 1, and
the channel transmittances are ηa = ηb =

√
η, because Charlie is placed midway between Alice and

Bob. This provides the rate equation given above. We notice here that we could obtain by similar
reasoning the key rate of the ideal single-photon MDI-QKD, which is RspMDI = η/2. This is not
plotted in Fig. 1a. However, the corresponding curve could easily be drawn from the one for the ideal
single-photon QKD as RspMDI = RspQKD/2.

◦ Ideal TF-QKD (thick dashed line). For the simulations of TF-QKD, we exploit the fact that the
detection scheme is the same as in ordinary QKD. It consists of single-photon interference followed by
single-photon detection. This makes it possible to use the same equations as in decoy-state QKD,22,49

under the assumptions in the security argument (see next section). Simulation-wise, it is customary
and reasonable to assume that there is no eavesdropping on the line, so that only the natural noise
and loss of the scheme play a role. Hence, on one hand, we consider two identical threshold detectors
in Charlie’s station, with the same detection efficiency. This entails that the total detected power is
independent of the relative phase of the interfering beams.50 We can then express the overall n-photon
yield of TF-QKD as in decoy-state QKD. On the other hand, the photons populating the twin fields
follow the Poisson statistics pn|µ (see Eq. (2) and related discussion) and this allows us to model the
gain of TF-QKD as in decoy-state QKD. We incidentally notice that this argument would not apply to
decoy-state MDI-QKD,24,46 where the users owns two independent phase-randomised photon sources
and the signal depends on the coincidence counts, not on the single counts, of Charlie’s detectors.

The simulation of the ideal TF-QKD is based on Eqs. (1)–(3) of the main text, in which we replace
the ideal parameters given in the inset of Fig. 1a. We set d = 1 and M = 16, which entails, from
Eq. (1), EM = 1.275%. For the decoy-state estimation, we assume an infinite amount of intensity
settings, as in Ref. [22]. The key bits are distilled from the pulses in the X-basis having total intensity
µ = u. The probability to prepare these pulses is asymptotically close to 1. Alice and Bob’s joint

single-photon quantities are y
1

= η̂, Q
1

= ue−uy
1

and e1 = EM , with η̂ = 10−
αL/2
10 =

√
η. Here, it

is important to notice the factor L/2 in η̂, which descends directly from Eq. (3) (see also Fig. 2) and
is due to Charlie being placed midway between Alice and Bob. To simulate gain and error rate, we
exploit the argument outlined above and specialise to TF-QKD the model developed for decoy-state
QKD in Ref. [51]. In the limit of long distance, we have Qu = uη̂ and Eu = EM . The ideal TF-QKD

key rate in Eq. (3) then simplifies to R
(¬ρ,ideal)
TF-QKD = uη̂/M{e−u [1− h (EM )]− h (EM )}. This key rate is

numerically maximised by the optimal value uopt = 0.765.

◦ Realistic TF-QKD (thick solid line). The simulation is again based on the similarity between TF-QKD
and decoy-state QKD, outlined in the previous point, and on Eq. (3). We still set M = 16, as this
value maximises the darker pink-shaded area in Fig. 1a, but this time we adopt a duty cycle coefficient
equal to d = 0.5 and the realistic parameters reported in the bottom row of the inset of Fig. 1a.
For the decoy state estimation, Alice and Bob use three intensity settings µa,b ∈ {w/2, v/2, u/2},
with w = 10−4, v = 10−2 and u = 0.4, prepared with probabilities pw = pv � pu = 1 − pv −
pw . 1. We associate the signals with the intensity u. According to the TF-QKD protocol, the key
bits are distilled only from this intensity class. Alice and Bob’s joint single-photon quantities are49

y
1

=
[
u2Qve

v − u2Qwew − (v2 − w2)
(
Que

u − y
0

)]
/
[
u(uv − uw − v2 + w2)

]
and e1 = (EvQve

v −

EwQwe
w)/

[
(v − w)y

1

]
, where y

0
= (vQwe

w − wQvev)/(v − w). For gain and error rate, we start

again from the model in [51]. We find Qu = 1 − (1 − Pdc)2e−uη̃, with η̃ = ηdet × η̂, ηdet = 30% and
Pdc = 10−8 the dark count probability per gate for a detector clocked at 1 GHz. This parameter
has equivalently been expressed in Hz in the inset of Fig. 1a. The gains Qv, Qw are analogous
to Qu and can be obtained by replacing u with v or w, respectively. For the error rates, Eu =
1/2 + 1/(2Qu)(1− Pdc){e−uη̃[1−(eopt+EM )] − e−uη̃(eopt+EM )}, with eopt = 3%. The error rates Ev, Ew
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are analogous to Eu. Nearly identical results have been obtained replacing the above analytical decoy
state estimation with an equivalent numerical formulation.

Security argument

In this section, we justify the key rate reported in Eq. (3) of the main text. Our approach is in three
steps. First, we will reduce TF-QKD to a scheme that is analogous to the well-known BB84 protocol.1

This will allow us to borrow some of the mathematical tools already developed for this protocol. As a
second step, we will study the security of the BB84-like scheme assuming a perfect single-photon source.
Lastly, we will extend the security from the single-photon setup to a more practical light source that
emits weak coherent pulses. This part contains the main open challenge to determine the ultimate key
rate of TF-QKD when Eve makes use of the global phase information disclosed in the TF-QKD protocol’s
step 5.

To emphasize the security-oriented cut of this section, we replace the user “Charlie” appearing in the
main text with the eavesdropper “Eve”. This replacement can only make the security analysis stronger, as
Eve is given full access to Charlie’s equipment. In the TF-QKD protocol, Eve can decide to not cooperate
with Alice and Bob, e.g., by not performing any measurement, or by not disclosing the (correct) results.
This would represent a denial-of-service attack, which is always possible in QKD. However, if Eve decides
to cooperate, she cannot cheat and either Alice and Bob successfully distil a secure key or they abort the
key distillation protocol.

In the security argument, we assume that ideal faultless equipment is used and that the legitimate users
strictly adhere to the protocol. All the light signals are assumed to be single mode and, in particular,
in the same polarisation state. We exclude any leakage of side information from the setup due to an
imperfect implementation of the protocol, either accidentally caused by the users or purposely triggered
by Eve. Finally, we work in the asymptotic regime and neglect the detrimental effect due to the finiteness
of the experimental data sample.

Notation

Let us start by introducing the notation. As already mentioned, we use the compressed subscript
notation xa,b to indicate xa, xb, the first label referring to Alice and the second to Bob. We de-
fine the photon-number states (Fock states) as in the main text, denoting |n〉 the Fock state con-
taining n photons. A coherent state with intensity µ and electromagnetic phase θ is then written as
|eiθ√µ〉 = e−

µ
2

∑∞
n=0 e

inθµ
n
2 /
√
n!|n〉, with i the imaginary unit. It is also convenient for later use to

define the single-photon entangled states,

|ψ±〉ab = (|0〉a |1〉b ± |1〉a |0〉b) /
√

2, (S1)

and the phase operator Û (θ),

Û
(θ)
a,b |0〉a,b = |0〉a,b, (S2)

Û
(θ)
a,b |1〉a,b = eiθ|1〉a,b. (S3)

We now introduce some auxiliary single-photon states. We define the Z-basis eigenvectors as |z+〉 = ( 1
0 ),

|z−〉 = ( 0
1 ), and the X-basis and Y -basis eigenvectors as |x±〉 = (|z+〉 ± |z−〉)/

√
2 and |y±〉 = (|z+〉 ±

i|z−〉)/
√

2, respectively. I = ( 1 0
0 1 ) will be the bidimensional identity matrix and X = ( 0 1

1 0 ), Y =
(
0 −i
i 0

)
,

Z =
(
1 0
0 −1

)
will be the three Pauli matrices. We write the two-photon maximally entangled states (Bell
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states) in the various bases as:

|Ψ±Z 〉ab = (|z+〉a |z−〉b ± |z−〉a |z+〉b) /
√

2, (S4)

|Φ±Z 〉ab = (|z+〉a |z+〉b ± |z−〉a |z−〉b) /
√

2, (S5)

|Ψ±X〉ab = (|x+〉a |x−〉b ± |x−〉a |x+〉b) /
√

2, (S6)

|Φ±X〉ab = (|x+〉a |x+〉b ± |x−〉a |x−〉b) /
√

2, (S7)

|Ψ±Y 〉ab = (|y+〉a |y−〉b ± |y−〉a |y+〉b) /
√

2, (S8)

|Φ±Y 〉ab = (|y+〉a |y+〉b ± |y−〉a |y−〉b) /
√

2. (S9)

In the discussion, we will also use the following relations between some of the Bell states,

|Ψ−Y 〉ab = i|Ψ−X〉ab, (S10)

|Φ−Y 〉ab = i|Φ−X〉ab, (S11)

which are easily verifiable using the definition of |z±〉, |x±〉 and |y±〉 given above.

Reduction to a BB84-like scheme

Target of this section is to reduce TF-QKD to another scheme that is easier to analyse and equally secure
or less secure than TF-QKD. This way, the security of the weaker scheme will automatically imply the
security of TF-QKD. We will achieve the target by gradually modifying some features in the physical
layout of the scheme or in its classical communication part.

As a first step, we consider the TF-QKD scheme in Fig. 2c of the main text. Its main security feature
is that each transmitter is inaccessible to the eavesdropper (grey-shaded areas). Therefore we can redraw
this setup as in Fig. S1a, i.e., with a single area inaccessible to Eve that includes two distinct transmitters.
We assume that these transmitters are perfectly locked to each other. This is the same assumption used
for phase-based MDI-QKD18 and is not restrictive. To see that, we analyse the states of the emitted
optical pulses.

The laser on path a1 emits pulses with intensity µa in a coherent state |√µa〉. Similar states, but
with intensity µb, are emitted by the laser on path b1. If the states are perfectly locked, there is no
phase difference between the two lasers, so that the resulting joint state can be written without loss of
generality as |√µa〉a1 |

√
µb〉b1 . On the other hand, if the lasers are imperfectly locked, we could write the

joint state as |√µa〉a1 |eiδ
lock
ba
√
µb〉b1 (points 1 in Fig. S1a), where δlockba is the phase difference due to the

imperfect locking (dashed box in the figure), counted from Alice’s phase. After the encoding with the
random phases ρa,b and the random bit and basis values γa,b (points 2 and 3, respectively, in Fig. S1a),
the state emitted by perfectly locked lasers would be

|eiγaeiρa√µa〉a1 |eiγbeiρb
√
µb〉b1 , (S12)

whereas the one associated with imperfectly locked lasers would be

|eiγaeiρa√µa〉a1 |eiγbeiρbeiδ
lock
ba
√
µb〉b1 . (S13)

However, because the phase encoding operations in Fig. S1a commute, this latter state could equally have
been obtained starting with the state emitted by two perfectly locked lasers, Eq. (S12), and then letting
Eve encode the phase δlockba herself after the pulses emerge from the protected area (point 3 in the figure).

Let us note that the commuting property between the phase encoding operations of δlockba and γa,b
cannot be given as granted. Security-wise, it means that the noise related to imperfect phase-locking is
independent of the bases chosen by the users. In fact, suppose that Eve wanted to add (basis-dependent)
noise only to one of the states prepared by the users, for instance the one with γa,b = 3π/2. For that,
she should wait until Alice and Bob encode their states and then add her noise, conditional on the
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Figure S1: Transmitters used for the reduction argument of TF-QKD. The grey-shaded areas
are inaccessible to Eve. The numbered points are for easy referencing from the text. LS: laser source;
SP: single-photon source.

states chosen by the users. In this case, the time sequence of the operations is important to Eve and
swapping the encoding operations is not legitimate. The described attack could be triggered, e.g., by an
imperfect phase modulator, which often introduces an offset in only one of the encoded states. In this
case, because the noise is basis-dependent, the commuting property of the phase encoding operations
fails and the analysis has to be modified.52 However, we assumed ideal components. Moreover, the phase
locking mechanism is independent of the basis. Therefore we are allowed to swap it with the other phase
operators in the preparation stage.

We also note that this form of basis-independent noise is similar to the one in the “unbalanced
BB84”.53 Because the noise affects equally all the encoded states, it does not represent a security risk
and it only changes the experimental data.54,55

Since the noise δlockba deriving from imperfect locking only entails a noisier communication and does
not impact the security of the scheme, we will omit it henceforth.

Similarly to the phase-locking noise, other physical differences between the users’ lasers (frequency,
polarization, temporal shape, etcetera) do not affect the security of the scheme, provided that they do
not leak side information to Eve, which is excluded by our assumptions. So we can consider, without
loss of generality, the case where the two lasers in Fig. S1a are identical in all degrees of freedom and
perfectly locked.

From here, we can go to the scheme in Fig. S1b and imagine that the users share the same laser rather
than two identical lasers. In fact, the resulting scheme emits quantum states that are indistinguishable
from those in Fig. S1a. The single laser in Fig. S1b emits a pulse in the coherent state |√µ〉 (point 1),
which impinges on a beam splitter and emerges as two pulses on paths a1 and b1 with intensity µa and
µb, respectively, with µ = µa + µb (point 2). The secondary pulses are encoded with phases ρa,b and
γa,b and are launched into the quantum channel. The joint Alice-Bob state seen by Eve (point 4) is then
|eiγaeiρa√µa〉a1 |eiγbeiρb

√
µb〉b1 , which coincides with the one in Eq. (S12).

To move from Fig. S1b to Fig. S1c, we equalise the random phases ρa,b. This is a crucial step and
deserves some attention. To equalise ρa and ρb, the users need to declare their random phases on the
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public channel and discard all the runs where the phases do not exactly match. For the moment, we
assume that this operation does not affect the security of the protocol. We will discuss later on the
implications of this assumption. Our target here is limited to showing that the classical information
given to Eve in the scheme of Fig. S1c is larger than or equal to the one disclosed in TF-QKD.

In TF-QKD, only the phase slices ∆k(a,b), not the exact phase values ρa,b, are disclosed (step 5 of the
protocol). Announcing ρa,b can only give more information to Eve than announcing ∆k(a,b), so it is not
restrictive to assume that in the scheme of Fig. S1b Alice and Bob announce the complete ρa,b. Then,
we can set without loss of generality ρa = ρ and ρb = ρ+ ρba, so to rewrite the resulting output state as

|eiγaeiρ√µa〉a1 |eiγbeiρeiρba
√
µb〉b1 . (S14)

This is the output state of the transmitter in Fig. S1c. In the associated protocol, Alice will announce ρ
and Bob will announce ρba so that the total disclosed information is equal to the previous scheme. Notice
that Bob can calculate ρba after learning ρ from Alice, and this is in accordance with the TF-QKD
protocol’s step 5, where Alice announces first and Bob second.

Security-wise, it is crucial that Eve does not learn the value of the global random phase ρ before the
users disclose it in the step 5 of the protocol. However, the relative random phase ρba is different and
can be given to Eve. Proving security without relying on ρba would automatically entail the security of
the previous schemes, where ρba is revealed during the protocol’s step 5.

So we swap the encoding operations for ρ, ρba and γa (they all commute, so this will not alter the
outcomes) and assign ρba to the quantum channel, as if it were encoded directly by Eve. This explicitly
shows that we will not use ρba to prove security. In fact, we could even omit this variable from the
discussion. However, because ρba is part of the announcement stage and it also represents unavoidable
phase noise in TF-QKD, we will carry it on as a variable fully known to Eve.

The last step in the reduction argument is presented in Fig. S1d, where the random secret phase ρ is
encoded before the splitting point into paths a1 and b1. It is easy to see that the output state at point 4
in Fig. S1d coincides with the output state at point 4 in Fig. S1c. Omitting the variable ρab, which has
been assigned to Eve, the output state reads

|eiγaeiρ√µa〉a1 |eiγbeiρ
√
µb〉b1 . (S15)

To obtain this state, it suffices to specify the beam splitter’s reflection as R = µa/µ (transmission as
T = µb/µ), where µ = µa + µb, and apply the usual input-output relations of the beam splitter to the
input state |eiρ√µ〉|0〉.

The scheme in Fig. S1d resembles the transmitter of a phase-based BB84 protocol implemented
with phase-randomised weak coherent pulses and emits exactly the same states, given by Eq. (S15).
The random phase ρ takes values in [0, 2π) and the encoding phases γa,b generate a relative phase
γba = (γb− γa)⊕ 2π between the two time bins on paths a1 and b1 that takes values in {0, π/2, π, 3π/2},
as in the phase-encoded BB84. Moreover, by inserting the intensity modulator (IM) in the setup of Fig.
S1d, the transmitter becomes equivalent to the typical transmitter used to implement the phase-based
decoy-state BB84 protocol. The IM can be equivalently described as two independent IMs placed on paths
a1 and b1, as in the TF-QKD scheme in Fig. 1b of the main text, provided that the users post-select
only equal intensity classes during the public discussion, which is prescribed by the TF-QKD protocol’s
step 5. This does not automatically imply that we can use decoy states in TF-QKD, which still has to
be proven.

Despite the similarity with the BB84 protocol, the scheme in Fig. S1d is not equivalent to it. The
most apparent difference is that in BB84 the emitted signals are analysed by a trusted receiver, whereas
in the scheme in Fig. S1d they are measured by Eve herself. A second difference is that the value of
the random phase ρ is announced in the scheme of Fig. S1d whereas it is not announced in the BB84
protocol. Therefore we cannot yet conclude that this scheme is as secure as the BB84 protocol.

However, we will show that the structure of the security proof is the same as the BB84 protocol’s
one, so we can adapt it to the new scheme. With this in mind, we will first analyse the case of a perfect
single-photon source, given in Fig. S1e, to then extend the result to the more practical source used in
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Fig. S1d. By virtue of the reduction argument, the security of TF-QKD will then follow from the one of
the scheme in Fig. S1d.

Single-photon source (Fig. S1e)

In this section, we analyse the security of the scheme in Fig. S1e, which is the same as in Fig. S1d, but
with the light source and the phase randomiser replaced by a perfect single-photon source. To prove its
security, we will follow the structure of BB84 protocol’s security proofs.47,56,57 We will show that the
users can distill entanglement at distance using a shared single photon inaccessible to Eve. Then we will
study the protocol in the X basis and derive its bit-error and phase-error rates. Finally, we will show
that the phase-error rate can be estimated from the bit-error rate in the Y basis.

In the scheme of Fig. S1e, the single-photon source emits a photon number state |1〉 (point 1 in the
figure), which is then split in the two paths a1 and b1 by a beam splitter that we assume, for simplicity,
to be 50:50. This implies µa = µb in the original protocol, which is guaranteed by the protocol’s sifting
procedure. The state at point 2 in Fig. S1e is then given by |ψ+〉a1b1 = (|0〉a1 |1〉b1 + |1〉a1 |0〉b1) /

√
2, see

Eq. (S1).
In TF-QKD, the encoding variables are γa,b. The output states of the setup in Fig. S1e (point 3)

can then be obtained by applying the phase operators Û
(γa,b)
a1,b1

to the initial state |ψ+〉a1b1 . Up to an
inessential global phase, we obtain:

Û
(γb)
b1

Û (γa)
a1 |ψ

+〉a1b1 =
ei(γb−γa)|0〉a1 |1〉b1 + |1〉a1 |0〉b1√

2
. (S16)

The values of γa,b are given by the sum of the bit phases, αa,b = {0, π}, and the basis phases, βa,b =
{0, π/2}, and the X and Y bases are associated with βa,b = 0 and βa,b = π/2, respectively. By convention
we set X as the computational basis, from which key bits are distilled, and Y as the test basis, from
which the potential presence of Eve is detected.

If the users select the X basis, then γa,b = αa,b. The two output states, denoted |ξ(0)X 〉a1b1 and

|ξ(1)X 〉a1b1 , can be derived from Eq. (S16) and depend on the cases αa = αb and αa 6= αb:

αa = αb : |ξ(0)X 〉a1b1 = |ψ+〉a1b1 , (S17)

αa 6= αb : |ξ(1)X 〉a1b1 = |ψ−〉a1b1 . (S18)

If the users select the Y basis, then γa,b = αa,b+π/2. The resulting output states |ξ(0)Y 〉a1b1 and |ξ(1)Y 〉a1b1
are equal to those in the X basis, as it can be easily verified:

αa = αb : |ξ(0)Y 〉a1b1 = |ψ+〉a1b1 , (S19)

αa 6= αb : |ξ(1)Y 〉a1b1 = |ψ−〉a1b1 . (S20)

The above equations show the in-principle security of the scheme in Fig. S1e. The state emitted by the
users, before any measurement is performed by Eve, is equal to either |ψ+〉a1b1 or |ψ−〉a1b1 . The only
information conveyed by these sates is the sign, which can only tell Eve whether the users encoded equal
bits, associated with |ψ+〉a1b1 , or different bits, associated with |ψ−〉a1b1 . However Eve remains clueless
about the absolute bit value encoded by each user, which depends on the single variables γa,b. These
variables do not appear in Eqs. (S17)-(S20), only their difference does. So the output states do not
depend on the individual phase values γa,b but only on their difference γb − γa, as can also be seen from
the output state in Eq. (S16). On the other hand, any attempt at measuring the state of a single user
will leave Eve clueless about the correlations between the bits. This is seen, e.g., by tracing the state
in Eq. (S16) over Alice’s degrees of freedom, which returns a mixed state that does not contain phase
information any more.
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Each legitimate user, however, can easily retrieve the bit value of the other user from the result of

Eve’s measurement and the knowledge of their own bit value. In fact, the states |ξ(0)X 〉a1b1 , |ξ(0)Y 〉a1b1 will

trigger the detector D0, whereas the states |ξ(1)X 〉a1b1 , |ξ(1)Y 〉a1b1 will trigger D1:

|ξ(0)X 〉a1b1 = |ξ(0)Y 〉a1b1 = |D0〉a1b1 , (S21)

|ξ(1)X 〉a1b1 = |ξ(1)Y 〉a1b1 = |D1〉a1b1 . (S22)

At this point, one remark is in order. In Fig. S1e we drew dashed-line boxes representing unitary
operations to encode the random phase ρ. These are the same operations as in Figs. S1d (ρ between
points 1 and 2) and S1c (ρ between points 2 and 3). If the users implemented such operations in

the scheme of Fig. S1e, the security of the scheme would be unchanged. If the unitaries Û
(ρ)
a,b were

implemented between points 2 and 3 in Fig. S1e, this conclusion would be apparent from Eq. (S16). If

Û
(ρ)
a,b were implemented between points 1 and 2, the conclusion would easily follow from the relation

eiρ|n〉 = |n〉. (S23)

In other terms, the encoding of the random phase ρ through the unitaries Û
(ρ)
a,b is not at variance with the

use of a perfect photon number source in the scheme of Fig. S1e. Even if the global phase ρ is announced
in this scheme, the users could have used, in principle, a photon number source to prepare the state seen
by Eve. Hence, it is legitimate to consider this source to prove the security of the scheme of Fig. S1e.

Actual schemes (Figs. S2a, S2b)

In the execution of the TF-QKD protocol, the bases are publicly announced and all the events with
mismatched bases are discarded. Hence it suffices to consider only the events with matched bases and
we analyse the two bases X and Y separately.

When theX basis is selected, the transmitter in Fig. S1e is equivalent to the one in Fig. S2a. Here, each
user owns an ancillary single-photon state, labelled a2 for Alice and b2 for Bob, which is not accessible to
Eve. The users initially prepare the ancillary states in |z+〉 to then measure them along the X direction,
through the measurement MX . Because the observables Z and X are complementary, they obtain a
perfectly random outcome. If the outcome is |x+〉 (‘+’ sign in Fig. S2a), they encode the phases γa,b = 0
(bit value 0, see step 3 of the TF-QKD protocol) on the paths a1 and b1. If the outcome is |x−〉 (‘−’
sign in Fig. S2a), they encode the phases γa,b = π (bit value 1) on a1 and b1. It is easy to verify that
the quantum states at points 1, 2 and 3 of Fig. S2a are the same as the corresponding states in Fig. S1e
when γa,b runs on the X-basis values. In particular, when the outcome of MX is ‘+’ (‘−’), the state at

point 3 of Fig. S2a coincides with the state |ξ(0)X 〉 (|ξ(1)X 〉) given in Eq. (S17) (Eq. (S18)).
For the Y basis, a similar argument applies. The corresponding scheme is now depicted in Fig. S2b.

The users still prepare their ancillary states as |z+〉, but they measure them along Y (MY in the figure).
If |y+〉 is obtained (‘+’ sign in Fig. S2b), they encode the phase γa,b = π/2 (bit value 0 in the Y basis) on
the paths a1 and b1, whereas if |y−〉 is obtained (‘−’ sign in Fig. S2b), they encode the phase γa,b = 3π/2
(bit value 1) on a1 and b1. It is easy to verify that the quantum states at points 1, 2 and 3 of Fig. S2b
are the same as the corresponding points in Fig. S1e when γa,b runs on the Y -basis values. In particular,
when the outcome of MY is ‘+’ (‘−’), the output state (point 3 of Fig. S2b) coincides with the state

|ξ(0)Y 〉 (|ξ(1)Y 〉) given in Eq. (S19) (Eq. (S20)).
This shows that the schemes in Figs. S2a and S2b are equivalent to the transmitter in Fig. S1e for

matching bases. They implement the actual operations prescribed by TF-QKD and allow to measure
the bit-error rates of the protocol. The Y -basis bit-error rate is obtained from the bits disclosed by the
users during the public discussion whereas the X-basis bit-error rate becomes available during the error
correction stage.
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Figure S2: Entanglement-based representation of TF-QKD. The grey-shaded areas are inaccessible
to Eve. a, b, Single-photon representation of the actual protocol in the X and Y basis, respectively. The
key bits are distilled from the X basis whereas the Y basis is used to test the channel. c, d, Schemes
resulting from postponing the measurementsMX andMY , respectively, until after the announcement of
Eve’s measurement’s results. Entanglement is distributed between Alice and Bob via a single photon that
is initially split and then recombined at the central measuring station. e, f, Virtual schemes to identify
and estimate the phase-error rate in the X basis. For X and Y complementary bases, a phase error can
be found by measuring the X-basis states in the Y basis (Fig. S2e). The phase-error rate coincides with
the bit-error rate of a Y -basis state measured in the Y -basis (Fig. S2f) if the only difference between the
schemes in Figs. S2e and S2f is the measuring basis of the ancillary states on paths a2 and b2.

Entanglement distillation and virtual schemes (Figs. S2c – S2f)

We now observe that all the outcomes in the protocol would not change if Alice and Bob delayed their
measurements MX and MY until after the announcement of Eve’s measurement’s results. The corre-
sponding schemes are depicted in Figs. S2c for the X basis and S2d for the Y basis.

Let us consider the X basis first. In the configuration of Fig. S2c, we have the following controlled
operations:

ĈU
(X)

a12 = Û (0)
a1 ⊗ |x+〉a2〈x+|+ Û (π)

a1 ⊗ |x−〉a2〈x−|, (S24)

ĈU
(X)

b12 = Û
(0)
b1
⊗ |x+〉b2〈x+|+ Û

(π)
b1
⊗ |x−〉b2〈x−|. (S25)

With these operators, the phase encodings on paths a1 and b1 are executed conditional on the state of
the control qubits on a2 and b2. These are the ancillary states owned by the users, which are prepared in
the superposition of X-basis states |z+〉 = (|x+〉+ |x−〉)/

√
2. By applying the operations in Eqs. (S24),

(S25) to the initial state |ψ+〉a1b1 we obtain:

|λX〉ab =
[
ĈU

(X)

b12

] [
ĈU

(X)

a12

]
|ψ+〉a1b1 |z+〉a2 |z+〉b2

=
[
Û

(0)
b1
|x+〉b2 + Û

(π)
b1
|x−〉b2

] [
Û (0)
a1 |x+〉a2 + Û (π)

a1 |x−〉a2
] (
|1〉a1 |0〉b1 + |0〉a1 |1〉b1

)
/(2
√

2)

=
(
|D0〉a1b1 |Φ−X〉a2b2 + |D1〉a1b1 |Ψ−X〉a2b2

)
/
√

2. (S26)
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If the users measure the state in Eq. (S26) in the X basis on paths a2 and b2, they will project it into

the same states |ξ(0)X 〉, |ξ
(1)
X 〉 of the previous scheme, Fig. S1a, see Eqs. (S21), (S22). This shows the

equivalence of the two preparations. The states |Ψ−X〉a2b2 , |Φ−X〉a2b2 are two of the four Bell states defined
in Eqs. (S6) and (S7), which are maximally entangled. This shows that Eve’s measurement leaves the
ancillary states on a2 and b2 in a maximally entangled state, which coincides with the Bell state |Φ−X〉 or
|Ψ−X〉 depending on which detector clicks. Because these states are pure, they are necessarily disentangled
from any other state. Moreover, they are maximally entangled, so the users could in principle measure
their halves of the entangled state (Alice on a2, Bob on b2) and retrieve the bit information in a secure
way. This is the same argument used in the security proof of the standard BB84 protocol.47,56

More specifically, to enable the distillation protocol, the users have to detect and correct bit and phase
errors in a set of noisy entangled pairs. This is possible in principle in the BB84 protocol because the
corresponding measurements commute.56 Then, by using specific quantum error correction codes,58,59

the users can bypass the correction of the phase errors, provided that they manage to show that the
phase-error rate in their scheme is small enough.47 Therefore proving the security of BB84 is reduced to
reliably estimate the phase-error rate of the protocol.

We follow here the same approach. The users could agree that every time Eve announces the state
|D1〉, Bob flips his state before measuring it. This turns a |Ψ−X〉 state into a |Φ−X〉 state, which could
then represent the target state for the entanglement distillation protocol.60 If during the execution of
this protocol the users find an error rate above the tolerable threshold, they will abort. Otherwise, they
will manage to in principle distill maximally entangled states out of a set of corrupted initial states.
When maximally entangled states become available, the users can measure them and get the key bits
with absolute security.

Let us notice that, in this perspective, it does not matter how the ancillary states shared by Alice and
Bob were initially corrupted, whether the natural noise of the channel introduced some decoherence or
whether Eve tried to attack the channel. Irrespective of the real cause, when the distillation protocol is
successful, the final state is guaranteed to be secure. By a similar argument, it does not matter whether
Eve actually performed the measurement prescribed by the TF-QKD protocol, or whether she disclosed
the true results. When Eve publicly announces the results, she commits herself to well-defined classical
variables. The users can then test their bit-error and phase-error rate estimates against the outcomes
announced by Eve and abort the protocol if they are too large. If they do not abort, they will distill a
secure key with high probability.

The element that remains to be proven is that the users can estimate the phase-error rate in the
computational basis X by measuring the bit-error rate in the Y basis. For that, let us first notice that we
can repeat for the Y basis the same argument presented for the X basis. The controlled operations in the
diagram of Fig. S2d, which depend on the ancillary state |y+〉 or |y−〉, are represented by the following
operators:

ĈU
(Y )

a12 = Û
(π2 )
a1 ⊗ |y+〉a2〈y+|+ Û

( 3π
2 )

a1 ⊗ |y−〉a2〈y−|,

ĈU
(Y )

b12 = Û
(π2 )

b1
⊗ |y+〉b2〈y+|+ Û

( 3π
2 )

b1
⊗ |y−〉b2〈y−|.

By applying them to the initial state we obtain:

|λY 〉ab =
[
ĈU

(Y )

b12

] [
ĈU

(Y )

a12

]
|ψ+〉a1b1 |z+〉a2 |z+〉b2

= − i√
2

(
|D0〉a1b1 |Φ−Y 〉a2b2 + |D1〉a1b1 |Ψ−Y 〉a2b2

)
.

From Eqs. (S10), (S11) it follows that |λX〉 and |λY 〉 are indistinguishable:

〈λX |λY 〉 = 1. (S27)

The same result could have been obtained from the definition of the complementary bases X and Y , i.e.,
by rewriting the eigenstates of X as |x±〉 =

(
e∓i

π
4 |y+〉+ e±i

π
4 |y−〉

)
/
√

2 and replacing them in Eq. (S26).
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Hence the two basis-dependent operators ĈU
(X)

and ĈU
(Y )

are the same operator, which we denote
with the basis-independent label ĈU in Figs. S2e and S2f. Then if the ancillary states on a2 and b2 were
measured in the Y basis rather than in the X basis the final result would not change. The users could
even decide the measurement basis after Eve has announced her results, without affecting the outcomes.
Therefore, Eve’s information does not change if the users decided to replace the measurement MX with
MY , leaving everything else unchanged. This guarantees that the scheme in Fig. S2e is equivalent to the
scheme in Fig. S2f. In turn, because the scheme in Fig. S2f is equivalent to the actual scheme in Fig. S2b,
we conclude that the X-basis phase-error rate can be reliably estimated from the bit-error rate measured
in the Y basis.

We can now borrow the remaining part of the security proof from the one developed for the BB84
protocol and guarantee the security of the scheme in Fig. S1e. For sufficiently low error rates, the users
could in principle distill states that are pure and maximally entangled, therefore necessarily uncorrelated
from any other party. This virtual protocol can be eventually reduced to one where only the actual
operations are performed. In our description, this corresponds to the schemes in Figs. S2a (X basis)
and S2b (Y basis), which have been shown to be equivalent to the one in Fig. S1e. Moreover, standard
error correction61,62 and privacy amplification63,64 replace the quantum error correction of bit-flip and
phase-flip errors. This leads to the following rate equation for the scheme in Fig. S1e:

R(Fig. S1e) = ωsift

[
1− h(ebit1 )− h(eph1 )

]
, (S28)

with ebit1 and eph1 the single-photon bit and phase error rates of the protocol, respectively, and ωsift a
coefficient due to the sifting of ρba. In the above equation, it has been assumed that the fraction of bits
devoted to testing the channel against Eve’s presence is asymptotically negligible. It is worth noting that
if the users encoded the phase ρ as shown in Fig. S1e (dashed boxes), the argument developed in this
section and in the previous one would still apply, by virtue of the discussion related to Eq. (S23).

Weak-coherent-pulse source

In the previous section we derived the secure key rate of the single-photon scheme in Fig. S1e. However,
the security of TF-QKD depends on the scheme in Fig. S1d, which features a different light source. Here
the single-photon source is replaced by a laser emitting weak coherent pulses followed by a block that
randomises the electromagnetic phase of the emitted states.

When we go from Fig. S1e back to Fig. S1d, we must include in the security analysis the announcement
of the global random phase ρ. In the virtual scheme of Fig. S1d, the announcement of ρ is not required
to reconcile the phases and the users only need to know ρba to sift their data. However, in the actual
protocol, the users need to exchange both ρa and ρb to determine the value of ρba and this corresponds,
in the scheme of Fig. S1d, to disclosing ρ. The security of TF-QKD after disclosing ρ is a subtle issue
and we devote the next sections to discuss this point in detail.

We start by analysing the security of the protocol under the following assumption:

A(¬ρ): the global phase ρ does not leak information to the eavesdropper.

The negation of ρ in the superscript reminds that the global phase ρ plays no role in security until the
above assumption is enforced. Then, in the next section, we drop this assumption and examine how this
can affect the security of the scheme.

When the assumption A(¬ρ) is enforced, Eve gains no information from ρ, as she is in the same position
as when ρ remains fully undisclosed, like in the BB84 protocol. So we can use the tagging25 argument to
connect the perfect source in Fig. S1e with the practical one in Fig. S1d.

According to the description of TF-QKD in the virtual protocol, in every run the value of ρ is picked
at random in the interval [0, 2π). Therefore the density matrix σ̂ prepared by the users in the scheme of
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Fig. S1d, as it would be seen by Eve, is:25,65,70–72

σ̂ =
1

2π

∫ 2π

0

dρ|eiρ√µ〉〈eiρ√µ| (S29)

=

∞∑
n=0

pn|µ|n〉〈n| (S30)

= funtσ̂unt ⊕ ftagσ̂tag, (S31)

where pn|µ = e−µµn/n! and we have set

funtσ̂unt = e−µ|0〉〈0|+ µe−µ|1〉〈1|, (S32)

ftagσ̂tag = e−µ
∞∑
n=2

µn

n!
|n〉〈n|, (S33)

with ftag = 1− funt = 1− e−µ − µe−µ representing the probability that a pulse jointly prepared by the
users contains more than one photon. Multi-photon pulses leak basis information to the eavesdropper,
so they are “tagged”,25 or “taggable”, by Eve. The worst possible case is when tagged pulses leak full
information to Eve and this is the case normally considered in security proofs. On the other hand, zero-
photon and single-photon states, defining σ̂unt, are basis-independent and leak no information to Eve.
Therefore, it follows that all the security results proven for the single-photon scheme in Fig. S1e also
hold for the TF-QKD scheme under the condition that A(¬ρ) holds, limited to the fraction of untagged
bits.25,50

More specifically, Eq. (S31) justifies an interpretation where the users classify each preparation as
either taggable or untaggable. This lets them bound the untagged fraction Ωunt of detection events that
have originated from zero-photon or single-photon signals. The resulting key rate can then be written
as22,25

Runt = ωsiftQµ

{
Ωunt

[
1− h

(
Eµ

Ωunt

)]
− h(Eµ)

}
, (S34)

where Qµ and Eµ are the measured gain and QBER of the pulses with intensity µ and we have maintained
the sifting factor ωsift due to the presence of ρba.

If we limit the untagged bits to the single-photon pulses, neglecting the (usually small) contribution
of the zero-photon pulses, then Ωunt = Q1/Qµ and the above key rate can be rewritten as

Runt = ωsift

{
Q1

[
1− h

(
QµEµ
Q1

)]
−Qµh(Eµ)

}
, (S35)

where Q1 represents the gain of the single-photon, hence untaggable, pulses emitted by the users.
The decoy state technique20 makes it possible to bound the single-photon quantities in Eqs. (S34)

and (S35) with high accuracy.21,22 We denote Ωunt and Q
1

the lower bounds for the fraction of untagged
bits and for the single-photon gain, respectively, and e1 the upper bound for the single-photon QBER.
Eq. (S34) then becomes21

Runt ≥ ωsiftQµ

{
Ωunt

[
1− h

(
Eµ

Ωunt

)]
− h(Eµ)

}
, (S36)

and Eq. (S35) becomes22

Runt ≥ ωsift

{
Q

1
[1− h (e1)]−Qµh(Eµ)

}
. (S37)

The above equations represent two different bounds to the actual key rate: Eq. (S37) is tighter, but
requires the estimation of the single-photon QBER, which is not required in Eq. (S36). In the following,
we only discuss Eq. (S37), but all the arguments apply unchanged to Eq. (S36) as well.

Our next claim is that, under the assumption A(¬ρ):
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1. When the IM is not employed, the scheme in Fig. S1d can achieve the key rate in Eq. (S34), where
the untagged fraction is bounded by Ωunt ≥ 1− ftag/Qµ.

2. When the IM is employed, the scheme in Fig. S1d can achieve the better key rate in Eq. (S37),
with the single-photon quantities estimated through the decoy state technique.

To support our claim, we notice that the scheme in Fig. S1d is the same transmitter as in the BB84
protocol, for which the key rates have been given in [25,50], when the IM is not included, and in [22],
when the IM is included. In particular, for the decoy-state key rate related to the scheme in Fig. S1d, we
notice that one of the fundamental assumptions of this technique, the randomisation of the initial state’s
electromagnetic phase, is guaranteed by the presence of the phase randomiser, whereas the possibility
to modulate the intensity is guaranteed by the presence of the IM. Moreover, by virtue of Eq. (S30),
the fundamental decoy-state equations22 hold for this scheme, because the signal or decoy classes are
indistinguishable to Eve.

Therefore, under A(¬ρ), we can apply the usual decoy-state equations to the transmitter in Fig. S1d
and obtain the key rate in Eqs. (S36) or (S37). We incidentally notice that the application of decoy states
to a setup where Eve performs the measurements and the users exploit her results to distil key bits is not
new and represents a basic tool in MDI-QKD.23 We also notice that in the BB84 protocol the squashing
model25,73,74 is adopted to guarantee that Bob’s measurement’s limited efficiency does not introduce a
dependance on the basis in the state sent by Alice, thus enhancing Eve’s information.71 However, in
TF-QKD and in the scheme of Fig. S1d, this is not needed as Bob is a transmitter and the detectors are
controlled by Eve.

The key rate for TF-QKD under assumption A(¬ρ) is now obtained by noting that, due to the reduction
argument previously described, its security is at least as strong as the scheme in Fig. S1d. The key rate
is therefore given by Eq. (S37), to which we have to add the peculiar sifting mechanisms of TF-QKD.
There is an overall sifting factor due to the reconciliation of the random phases (factor 1/M) and one
due to the fulfillment of the locking condition (factor d). We then add a coefficient f ≥ 1 to take the
inefficiency of the error correction into account.22 Finally, we express the key rate assuming that the
users perform a refined data analysis,26 counting the detection events and the errors separately in the
two bases. This is legitimate75 as, limitedly to the untagged states, the protocol is basis-independent,
so splitting the detected sample according to the basis represents a fair sampling of the overall data set.
When we gather these elements into a single equation we get

R
(¬ρ)
TF-QKD =

d

M

{
Q

1
[1− h (e1)]− fQµh(Eµ)

}
, (S38)

which is Eq. (3) in the main text. This rate equation is formally equal to the one used for the efficient
decoy-state BB84 protocol. We can therefore generally use it in the same way. However, it is worth
remarking that, similarly to the BB84 protocol, the distance between the preparation stage and the
detection stage is L, but, differently from the BB84 protocol, the distance between Alice and Bob is 2L.

Before we conclude this section, it is convenient for later use to rewrite Eq. (S38) in terms of the
information gained by each party, as follows:

R
(¬ρ)
TF-QKD =

d

M
Qµ

{
1− fh(Eµ)−

[
1−

Q
1

Qµ
(1− h (e1))

]}
=

d

M
Qµ

[
IAB − I

(¬ρ)
E

]
, (S39)

where IAB = 1− fh(Eµ) is the mutual information between Alice and Bob and I
(¬ρ)
E = 1−Q

1
/Qµ(1−

h (e1)) is the upper bound for Eve’s information under the assumption A(¬ρ).

Dropping the assumption on random phase announcement

In the previous section, we analysed the security of TF-QKD under the assumption that the announcement
of the global phase ρ does not leak information to the eavesdropper. In this section, we describe how
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removing this assumption can affect the protocol’s security.
However, before dropping A(¬ρ), let us show some examples where A(¬ρ) holds, or partially holds.
A first example is when Eve is limited to perform a measurement based on photodetection. If Eve

applies photodetection to the pulses emitted by the users, she projects the resulting states into a density
matrix that is diagonal in the photon number states. Therefore, the information carried by ρ is erased
and Eve cannot exploit it anymore. This situation includes, for instance, the photon-number-splitting
(PNS) attack,65 which is the most powerful attack against the phase-randomised BB84 protocol, and the
conditional beam splitting attack,66 which approximates the PNS with a series of beam splitters followed
by conditional photodetection.

A second example where the assumption A(¬ρ) clearly holds is when ρ remains undisclosed. For
example, the users could encrypt the global phase information with the one-time pad67 thus making it
unavailable to Eve. Of course, because the global phase information is much larger than the key distilled
in the protocol, there is no key gain in this version of the protocol. However, the global phase is encoded
on quantum states and we cannot exclude the possibility that the users can recycle the one-time-pad
key,68 thus achieving a net gain. An interesting variant of this method is if the users adapt TF-QKD to
accept a discrete global phase randomisation.69 In this case, they could decide in advance the values of
the global phase and recycle this sequence of values until it becomes too degraded to be reused. This
latter method would also enhance the sifting efficiency, hence the key rate, of TF-QKD.

Let us now study how dropping the assumption A(¬ρ) can affect the security of the TF-QKD scheme
presented in the main text. To tackle this problem, it is convenient to maintain the virtual description
where the global phase is split into ρ and ρba. We can then give ρba to Eve and reduce the security issue
to publicly revealing ρ. The users do not really need to reveal ρ in the virtual protocol, as the sifting
of their data depends on ρba. However, the disclosure of ρ is necessary to make the virtual protocol
equivalent to the actual one, where ρa and ρb are fully revealed.

When the global phase ρ is revealed, Eve’s knowledge about the source of quantum states generally
increases. In particular, after the announcement of the global phase, it is not possible any more to write
the density matrix of the users’ states as a photon number channel, as in Eq. (S31). This suggest that

the key rate R
(¬ρ)
TF-QKD is an over-optimistic prediction of the true TF-QKD key rate.

On the other hand, it is crucial to observe the temporal sequence of the events. The global phase is
only disclosed after the quantum communication is over, after Eve has announced the results of her mea-
surement and after the bases have been disclosed by the users. This entails some relevant consequences.

The first is that Eve cannot exploit the global phase information to enhance her real-time attack
of the signals traveling along the channel. At the time of the measurement, Eve ignores ρ and faces
the same situation as in the presence of the assumption A(¬ρ). The second is that Eve’s announcement
cannot depend on the global phase. Therefore, transmission and error rates measured by the users cannot
depend on ρ either. Finally, the announcement of ρ cannot give Eve more basis information than she
already has. Because ρ is disclosed after the bases are revealed, Eve already knows all the bases used in
the protocol.

However, we cannot exclude the possibility that the announcement of ρ leaks bit information to Eve.
Clearly, the bit information is always useful to the eavesdropper, even after all the measurements have
been completed, because it directly relates to the secret key. For example, if the users announced directly
the bits, the security of the protocol would be clearly compromised. A less trivial situation is when the
announcement of the global phase allows Eve to post-select a restricted number of ancillary states that
she can correlate with the key bits. This possibility is described with an explicit example in the next
section.

Collective beam-splitting attack

Here, we analyse the situation where the announcement of the global phase allows Eve to extract addi-
tional information from her ancillary states.

A powerful example of this possibility is given by the collective beam-splitting (CBS) attack. This
was described in relation to a binary continuous-variable protocol76 and to phase-distributed protocols.77
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Here, we adapt it to TF-QKD.
In the CBS attack, Eve uses two identical beam splitters, placed on the paths connecting Alice and

Bob to the measuring station, to extract part of the signals from the communication channel. The beam
splitters have transmission t =

√
η and reflection r =

√
1− η, where η is the transmission of the channels

connecting the users to the measuring station. Eve stores all the states reflected by the beam splitters on
her ancillae and uses the states transmitted by the beam splitters to announce her measurement’s results
during the step 4 of the TF-QKD protocol. Because the transmission of the beam splitters coincides with
the channel transmission, the users will not notice any unusual loss in their system. Also, because the
signals transmitted through the beam splitters are not perturbed by Eve, the users will not notice an
increase in the QBER. This illustrates the dangerousness of this attack.

After the quantum transmission, Eve’s ancillae will be correlated with the states emitted by the users,
given in Eq. (S15). Their state will be:

|eiγaeiρ
√

(1− η)µa〉ea |eiγbeiρ
√

(1− η)µb〉eb , (S40)

where we denoted ea and eb Eve’s ancillae on Alice’s and Bob’s paths, respectively.
At the step 5 of the protocol, the global phase ρ and the bases, contained in the variables γa,b, are

announced, whereas the bit values are kept secret. After all the mismatched events are discarded, both
by the users and by Eve, the remaining states in the eavesdropper’s hands will be

| ±
√

(1− η)µa〉ea | ±
√

(1− η)µb〉eb , (S41)

where we associate the + (−) sign with the bit value 0 (1).
From the measurement of the states transmitted through the beam splitters, Eve also knows whether

the users encoded equal or different bit values. This information is in fact disclosed by Eve herself during
the step 4 of the TF-QKD protocol. Suppose that the encoded bits are equal (the case with different bits
is analogous). In this case the signs in the states of Eq. (S41) are equal, so Eve can learn the bit value
by discriminating between the following two states:

|ψ0〉e = |
√

(1− η)µa〉ea |
√

(1− η)µb〉eb , (S42)

|ψ1〉e = | −
√

(1− η)µa〉ea | −
√

(1− η)µb〉eb , (S43)

where the subscripts 0 and 1 refer to the bit values.
Several bounds are available to estimate Eve’s success probability in discriminating between the

above states,78 for instance, the minimum-error-discrimination bound79 and the unambiguous-state-
discrimination bound.80–82 These bounds, however, are all related to a discrimination between individual
ancillary states. Here, on the contrary, we want to give Eve more resources and estimate the maxi-
mum information she can get by performing a collective measurement on her ancillae. In this case, the
maximum information she can extract is upper bounded by the Holevo quantity:83,84

I
(CBS)
E ≤ I(CBS)

E = S(r̂)− 1

2
[S(r̂0) + S(r̂1)], (S44)

where I
(CBS)

E is the upper bound to Eve’s information in the CBS attack; r̂0 = |ψ0〉e〈ψ0|, r̂1 = |ψ1〉e〈ψ1|,
r̂ = (r̂0 + r̂1)/2 and S(x̂) = −tr(x̂ log2 x̂) represents the von Neumann entropy of the quantum state x̂.

The corresponding information can be explicitly calculated. The entropy of the pure states r̂0,1 is
zero. The entropy of the state r̂ is related to the scalar product of the states in Eqs. (S42), (S43) and is
equal to

S(r̂) = h

[
1− e−2(1−η)µ

2

]
= I

(CBS)

E , (S45)

where µ = µa +µb. By virtue of Eq. (S44), the above quantity represents the maximum information Eve
can get from a CBS attack per detection event. If we add this information to the one Eve gets before
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Figure S3: TF-QKD key rates with the addition of collective beam splitting (CBS) attack.
The curves have the same meaning as in Fig. 1a of the main text. The solid (dashed) line is for the
realistic (ideal) TF-QKD key rate under the most general attack performed by Eve before the global phase
announcement plus the CBS attack performed after the announcement. The key rates are slightly bent
upwards at short distance because the CBS attack becomes more effective after 3 dB of the communication
distance, where more pulses are directed towards Eve’s ancillae than towards the central measuring
station. After this initial tradeoff, the key rate is dominated by the CBS attack, which pushes the
initial intensity set by the users towards low values. The close-to-optimal total intensity of the signals
used in the simulation is 0.1 (0.05) for the ideal (realistic) TF-QKD implementation. Letter-code for
the theoretical bounds are: a, decoy-state MDI-QKD; b, decoy-state QKD; c, single-photon QKD; d,
secret key capacity. See section “Numerical simulations” for the explicit expressions. Symbol-code for
the experimental results: squares, triangles and circles are for QKD, continuous-variable QKD and MDI-
QKD, respectively. Inset: Pdc, dark count probability; ηdet, total detection efficiency; eopt, channel optical
error rate; f , error correction coefficient. The simulation parameters related to detectors are different
from Fig. 1a. Here, we considered Pdc = 1 Hz (10 Hz in Fig. 1a) and ηdet = 50% (30% in Fig. 1a), which
are still featured by commercially available single-photon detectors.85,86
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the global phase is announced, I
(¬ρ)
E in Eq. (S39), and draw the resulting key rate, we obtain the plots

in Fig. S3, which is a new version of Fig. 1a in the main text.
It is apparent that, despite the additional substantial information gained by Eve through the CBS

attack, the TF-QKD key rates still scale with the square-root of the channel’s transmission. Hence,
it is still possible to overcome the SKC bound at large distance, above 300 km (400 km) for the ideal
(realistic) TF-QKD implementation. It is also worth noting that the new rates have been obtained
without changing the simulation parameter corresponding to the protocol’s optical noise, eopt, showing
that the demands on the optical alignment of the system are unchanged, even in the presence of the
CBS attack. Other parameters have been modified to enhance the detection rate at long distance, as
reported in the inset of Fig. S3. However, also the more technologically demanding simulation parameters
correspond to commercially available single-photon detectors.85,86

Considerations on the key rates in Fig. S3

Although the key rates in Fig. S3 have not been proven to be lower bounds for the TF-QKD key rates,
common sense suggests that they are over-conservative in fact.

Before the global phase is announced, Eve’s knowledge about the initial Alice-Bob state is described

by the density matrix σ̂
(pre)
ab = σ̂, given in Eqs. (S29)–(S31). After the global phase is announced, Eve’s

knowledge is updated to the following density matrix:

σ̂
(post)
ab =

M

2π

∫ 2π
M

0

dρ P̂ (eiρ
√
µ), (S46)

where we have used the notation P̂ (x) = |x〉〈x| and we have considered that only the phase slices ∆k are
announced, not the exact global phase ρ, so Eve still has an uncertainty 2π/M on the phase value. This
brings the width of a phase slice, 2π/M , to the integral’s upper limit.

Let us now suppose that Eve’s strategy depends on the global phase announcement. She could

prepare her ancillae in such a way that, before ρ is announced, she gets maximum information I
(¬ρ)
E ,

as in Eq. (S39). Then, after ρ is announced, she gets additional information ∆I
(ρ)
E . This is what we

considered to draw the TF-QKD key rates in Fig. S3, where we set ∆I
(ρ)
E = I

(CBS)

E . However, this
already appears to be over-pessimistic, giving Eve more information than she can really get. The reason

is that Eve’s ancillae cannot simultaneously provide I
(¬ρ)
E and I

(CBS)

E .

To make this statement more precise, we connect ∆I
(ρ)
E to an optimal measurement and then show

that the gained information is always smaller than the maximum information I
(CBS)

E extracted from the
CBS attack (Eq. (S45)).

Our argument is that, regardless of how Eve prepares her ancillae, she will have to measure them in

order to gain the information ∆I
(ρ)
E . However, her most powerful measurement cannot give her more

information than she would retrieve from the optimal measurement to distinguish σ̂
(pre)
ab from σ̂

(post)
ab .

In turn, the maximum probability to distinguish between two quantum states x̂ and ŷ with an optimal
measurement is given by the trace distance D(x̂, ŷ).51,87 Therefore we can quantify the information gain
as

∆I
(ρ)
E ≤ 1− h(psucc), (S47)

where psucc = 1/2[1+D(x̂, ŷ)].88 Because the trace distance is convex in each of its inputs, we can bound

the trace distance between the states σ̂
(pre)
ab and σ̂

(post)
ab as follows:

D
(
σ̂
(pre)
ab , σ̂

(post)
ab

)
≤ M

4π2

∫∫
V

dρ dρ′D
[
P̂ (eiρ

√
µ), P̂ (eiρ

′√
µ)
]

=
M

4π2

∫∫
V

dρ dρ′
√

1− e−2µ[1−cos(ρ′−ρ)], (S48)
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where V specifies the domains ρ ∈ [0, 2π] and ρ′ ∈ [0, 2π/M ]. By solving the above integral and plugging

the result into Eq. (S47), we have verified that ∆I
(ρ)
E is always considerably smaller than I

(CBS)

E , for any
value of the free parameter µ, thus justifying our statement at the beginning of this section about the
conservativeness of the TF-QKD key rates plotted in Fig. S3.

Final considerations

In our security argument, we let Eve play the role of Charlie and she acts as a completely untrusted
party. Also, Alice and Bob do not possess measuring devices. The virtual measurements related to the
schemes in Figs. S2c-S2f are not really executed by the users and they are merely tools for the security
argument. This qualifies TF-QKD as a measurement-device-independent scheme.

To prove security, we assumed that the two transmitters are perfectly locked, similarly to phase-based
MDI-QKD.18 We have then shown that this condition is not restrictive because imperfect phase locking
would only introduce a basis-independent noise. However, it seems interesting to discuss how feasible
this assumption is in practice.

Experiments on first-order interference of light beams emitted from independent lasers have been
performed for 50 years now17 and it is not difficult to replicate them with good interference visibility.
Although the frequency matching between the two independent lasers is more demanding than in second-
order interference,89,90 it can be achieved using optical phase-lock loop (OPLL) techniques.27,28 These
are well-known elements in optical communications and can stabilise the frequency of two distant lasers
to less than 1 Hz over 1000 seconds.29

In OPLL, the light beams from a master laser and a slave laser interfere on a beam splitter and
generate a beating signal.28 The resulting signal is measured by a photodiode, whose output is amplified,
filtered and used to adjust the frequency of the slave laser. Security-wise, it is important to note that the
cavities of the two lasers are not in optical contact. This entails a higher practical security than attained,
e.g., using laser seeding,91 where the cavities of the lasers are in direct contact.

We expect that other limitations of the scheme, related to an asymmetric implementation of TF-QKD,
will not spoil the overall performance. For instance, an intensity mismatch on Charlie’s beam splitter
would not affect the interference visibility considerably. If δI represents the intensity fluctuation and I
the average intensity, the visibility scales at worst linearly with δI/I. The contribution of a laser source
to this ratio is usually very small, even in commercial lasers. On the other hand, the contribution to this
ratio from the optical fibre interferometer is modest too, as proven by the 99.65% visibility reported in
Fig. 3c. Moreover, the average intensity of each user’s laser can be effectively stabilised in time using
an optical power meter plus feedback via a variable optical attenuator, as already implemented in QKD
systems. Decoy state preparation can be precisely achieved through careful calibration of the intensity
modulators. In decoy states, the intensity emitted by the users is only weakly dependent on the channel
length, so the users do not have to change their intensity settings if the channels’ lengths are not exactly
the same. Finally, if the users wanted to match the channel losses, this would be easily realisable with
an extra attenuator in Charlie’s station.
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