Lecture 2:
Quantum optics at a
glance.
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* Few words about light and states
* Wave and particle

* Quantum interference

* Beamsplitter

States of light

Entangled state

Qubit concept

* Bloch sphere



e Thermal radiation

Single photon is beautiful, but we expect from it some
practical application

e All hot objects emit light
* Emission spectrum can be measured
 Classical physics predicts infinite intensity

emission energy density




Remind few words about light and states

Plain wave:

E(7.t) = Ege'F

Combination of plain waves makes slowly-varying envelope :
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Figure 1.1: A pulse with a slowly varying envelope.
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At the same time light can be gauntized:
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Single-Photons are Elementary Quantum
Systems

* A single-photon constitutes an elementary quantum system

e Semi-transparent mirror It cannot be split
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What is the “shape” of the photon?



States of light

Fock state:
In) - defined number of photons
Phase is not defined.

What about AEAt ???
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the Poisson distribution with (n) = 4 (empty circles) and (n) = 25 (filled circles).



How to observe (n) ?

Threshold detector clicks

on 1+ photons, we can put
many of them Superconducting nanowire

Power P bolometers can distinguish
number of photons
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How do we implement annihilation operator in the real experiment?
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single-photon 6.
detector
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Iy) trigger

low-reflectivity &
beam splitter

The scheme. A “click” indicates that a Experimental quantum
photon has been removed from |y) process tomogralphy

R. Kumar, E. Barrios, C. Kupchak and
A.L., PRL 110, 130403 (2013)

Annihilation operator is hon-deterministic
« Trace of the process output is given by the “click” probability

« The process involving the annihilation operator can change the state
at a distance but cannot be used for faster than light communication
because we need to transmit information about click



Beamsplitter
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How does nature decides where is +r and where —r ?

Beamsplitter represents an absorbtion:
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The “bomb™ paradox
[A. Elitzur and L. Vaidman (1993)]

* Mach-Zehnder interferometer tuned to get all signal on A

If we move to single photon signal all clicks will still be on A



The “bomb™ paradox
[A. Elitzur and L. Vaidman (1993)]

* Mach-Zehnder interferometer tuned to get all signal on A
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If cut one arm the signal will be split 50/50
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Single photon will click random detector



The “bomb™ paradox
[A. Elitzur and L. Vaidman (1993)]

* Interaction-free weapons inspection

* Insert a single-photon sensitive bomb into one of the interferometer arms

W —=s N
— @ —
Bomb absent

— interference observed: all photons emerge at A

Bomb present
— no interference: photons emerge at Aor B
— bomb may or may not explode

Photon detected at B (what probability ?)
— bomb is present
— bomb has been detected without any interaction!




Hong-Ou-Mandel effect
(a) (b)

fully distinguishable particles indistinguishable particles
S
number of coincidences number of coincidences
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Entangled states

Einstein, A.; Podolsky, B.; Rosen, N. (1935). "Can Quantum-
Mechanical Description of Physical Reality Be Considered
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Polarization of Photons

e Direction of oscillation of the electric field associated to
lightwave

/

* Polarization states \K

e What can we do with it ?




How do we prepare states?

* We decide to use modern 10GHz fiber phase modulator as Pockels cell
* Even small time imbalance will break interference in the case of chirped pulse

* We propose to use identical phase modulator on the Bob side rotated to /2 to compensate the polarization mode
dispersion.
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* Bob use this modulator for active basis choice
 Two detectors are used instead of four

* This scheme will allow to make QKD transmitter that of a USB stick size.

* A. Duplinskiy, V. Ustimchik, A. Kanapin, V. Kurochkin, Y. Kurochkin. Low loss QKD optical scheme for fast polarization encoding // Opt. Express 25(23),
28886-28897 (2017).
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States prepared by Pockels cell

e Polarization distortion induced by long quantum
channel are compensated by polarization controller

e At the entrance of Alice’s polarization controller
amplitudes of two polarization components should be
equal (polarization is not obligatory linear)

* BB84 states are not obligatory diagonal +45, diagonal -
45, left and right. It can be any pair of maximally non
orthogonal states combined by equal horizontal
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Quantum cryptography is beautiful application of single particle

Alice

Classical channel

Bob
\ )
@ Quantum channel |\|lﬁ> Y3 ‘

Eve

Alice and Bob: to estimate the Eve’s information |,z on key

. . T Experimentalists: to maximize |,
{ |, small: Error correction + Privacy amplification

|\g | ; . ]
AE large @ Theorists: to quantify I,¢

* New protocols -> higher tolerance to noise, bit rate and distance growth

* New methods to prepare and measure states -> reduce size and cost

* Security analysis and attacks -> search for good model of non-ideal components
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How it looks
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Secure

in the future
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New market — new possibilities

Today QKD market is the startup market Investment growth G~ " H3Bse
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1 Markets&Markets: Quantum cryptography market - 2017 to 2022



Optical implementations of a qubit

CW qubits
« Single-rail qubit k | r N
— {L AA Il "w\/ I
0,)=[0 [ | i

- Polarization qubit great
for BB84 protocol

e Dual-rail qubit
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Polarizing
beam splitter
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What methods of encoding you can propose?
Can we encode more than one bit?



States prepared by Pockels cell
Poincaré sphere Q

in case of
polarization

|A) |B)

|0)=]1A)+|B)
Other combinations?

Figure 6.3: The Bloch sphere.
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Irreversibility of Measurements

Incoming photon polarizedﬁt 90°

=
E \/

Incoming photon polarized at 45°
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High bit rate quantum random number generator

(a)

e

Pulse driver

(b)

e

Pulse driver
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2017-2018 Sberbank field tests

25 km, 14 dB loss.

VPN

QBER (%)
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LAUNCHING QUANTUM SECURITY

* Two Sberbank offices

* 25 km line, 8
segments, 14 dB loss

* 300 MHz pulse
repetition rate

* BB84+ decoy
* Signal 0,175 ph/pulse

* Decoy 0,067
ph/pulse

* QBER5,5%
* 2 kbit/s raw key

* 0,1-0,9 kbit/s secret
key

* Key consumption 256
bit per 400s.
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QKD distance limit is driven by exponential loss

Estimated key generation rate
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Quantum repeaters

* Problem: to get 1 photon after 1000 km line you need to make : 1020 ts what is
not practical

e Practical distances are within 100 km in the external lines and within
400 km in the lab (less than 1 bit/s)

* Solution comes from classical communication, we need a repeater

What is a repeater
* Device that captures a signal, regenerates it, and sends it further

Classical repeater will inevitably cause noise

* Quantum repeater
* Must capture and regenerate a photon without measuring its polarization
* Requires memory for efficient operation
* Requires entangled states



We need to create quantum correlations between Alice
and Bob...

Source of entangled
photon pairs

EZ]) The photons are likely to get lost on their way




Entanglement swapping

Source of entangled
photon pairs

Source of entangled
photon pairs

L

entangled

Long-distance entanglement can be created by entanglement swapping

A Bell measurements on modes 2 and 4 entangles modes 1 and 4
This protocol has much in common with teleportation




Quantum relay

Entanglement Entanglement Entanglement Entanglement
source source source source
g / ’ . ‘ '

entangled
Long-distance entanglement can be created by entanglement swapping
EZbut to succeed, all links must work simultaneously.
— success probability still decreases exponentially with distance.



The role of memory

Entanglement Entanglement
source source
Memory Memory Memory Memory
entan entangled Pni.aﬁglﬁf

« But if we had guantum<memory,
« entanglement 1n a link could be stored...
until entanglement in other links has been created, too.
« Bell-measurement on adjacent quantum memories...
will create the desired long-distance entanglement.
 Alice can teleport her photon to Bob



Quantum repeater
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This technology is called quantum repeater
Initial idea: H. Briegel et al., 1998
In application to EIT and quantum memory: L.M. Duan et al., 2001
Quantum memory for light is essential for long-distance quantum communications.



