Quantum optics and
qubits



e Thermal radiation

Single photon is beautiful, but we expect from it some
practical application

* All hot objects emit light
* Emission spectrum can be measured
 Classical physics predicts infinite intensity

emission energy density




Remind few words about light and states

Plain wave:

E(F t) = ng‘f’fﬁ;r_iw + c.c.



Remind few words about light and states

Plain wave:

E(F IL.) = E[]F_?”:T_?wt + C.C.
Combination of plain waves makes slowly-varying envelope :

A. I. Lvovsky. Nonlinear and Quantum Optics

Figure 1.1: A pulse with a slowly varying envelope.



Remind few words about light and states

Plain wave:

E(F, t) = Egﬁ?im‘_m + c.c.

Combination of plain waves makes slowly-varying envelope :

A. 1. Lvovsky. Nonlinear and Quantum Optics

Figure 1.1: A pulse with a slowly varying envelope.
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Single-Photons are Elementary Particles

* Semi-transparent mirror

What is the “shape” of the photon?



Single-Photons are Elementary Particles

* Semi-transparent mirror It cannot be split
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What is the “shape” of the photon?



States of light

Vacuum state
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States of light

Fock state: . | |
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States of light

Fock state:

|n) - defined number of photons
What about AEAt ?7?7?
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the Poisson distribution with (n) =4 (empty circles) and (n) = 25 (filled circles).



How to observe (n) ?

Threshold detector clicks

on 1+ photons, we can put
many of them Superconducting nanowire

Power P bolometers can distinguish
number of photons
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How do we implement annihilation operator in the real experiment?

Homework

= How to realize annihilation operator
= Can it be deterministic?



Beamsplitter
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How does nature decides where is +r and where —r ?
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The “bomb” paradox
[A. Elitzur and L. Vaidman (1993)]

* Mach-Zehnder interferometer tuned to get all signal on A

W —=s

If we move to single photon signal all clicks will still be on A



The “bomb” paradox
[A. Elitzur and L. Vaidman (1993)]

* Mach-Zehnder interferometer tuned to get all signal on A

W —=i N

If cut one arm the signal will be split 50/50

;
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Single photon will click random detector



The “bomb” paradox
[A. Elitzur and L. Vaidman (1993)]

* Interaction-free weapons inspection
* Insert a single-photon sensitive bomb into one of the interferometer arms

"M"P o AN \\
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Bomb absent

— interference observed: all photons emerge at A

Bomb present
— no interference: photons emerge at Aor B
— bomb may or may not explode

Photon detected at B (what probability ?)

— bomb is present
— bomb has been detected without any interaction!




Phase of the state

Fock state:
|n) - defined number of photons

Coherent state: |a)
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Global phase of the state

Fock state:
|n) - defined number of photons
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Hong-Ou-Mandel effect
(a) (b)

tully distinguishable particles
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indistinguishable particles

HOM dip

number of coincidences

arrival time difference

arrival time difference






Optical implementations of a qubit

CV qubits
« Single-rail qubit & s \A+c_ &L
N> i l . h
0.)=(0; I

. Polarization qubit great
for BB84 protocol

Polarizing
beam splitter

What methods of encoding you can propose?
Can we encode more than one bit?
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States vizualization

1A) 1B)

|0)=|A)+|B)
Other combinations?

Figure 6.3: The Bloch sphere.



States vizualization

|B)

Figure 6.3: The Bloch sphere.




States vizualization

|B)

Figure 6.3: The Bloch sphere.



States vizualization

Figure 6.3: The Bloch sphere.



States vizualization

Figure 6.3: The Bloch sphere.



States vizualization

Figure 6.3: The Bloch sphere.



States vizualization
|A)

Figure 6.3: The Bloch sphere.



States vizualization

0 |B )
1
Figure 6.3: The Bloch sph‘



Phase and polarization

Poincaré sphere
in case of
polarization

Figure 6.3: The Bloch sphere.




Polarization of Photons

e Direction of oscillation of the electric field associated to
lightwave

[

* Polarization states \i

e What can we do with it ?

i —



How do we prepare states?

* We decide to use modern 10GHz fiber phase modulator as Pockels cell
* Even small time imbalance will break interference in the case of chirped pulse

* We propose to use identical phase modulator on the Bob side rotated to /2 to compensate the polarization mode
dispersion.
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 Bob use this modulator for active basis choice
e Two detectors are used instead of four

 This scheme will allow to make QKD transmitter that of a USB stick size.

* A. Duplinskiy, V. Ustimchik, A. Kanapin, V. Kurochkin, Y. Kurochkin. Low loss QKD optical scheme for fast polarization encoding // Opt. Express 25(23),
28886-28897 (2017).
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States prepared by Pockels cell

* Polarization distortion induced by long quantum
channel are compensated by polarization controller

* At the entrance of Alice’s polarization controller
amplitudes of two polarization components should be
equal (polarization is not obligatory linear)

* BB84 states are not obligatory diagonal +45, diagonal -
45, left and right. It can be any pair of maximally non
orthogonal states combined by equal horizontal
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Continuous variable operate infinite dimensions

coherent
state
of light

wo.”

Credit: P. Grangier, "Make It Quantum and Continuous", Science (Perspective) 332, 313 (2011)
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Quantum cryptography is beautiful application of single particle

Alice | Bob

Classical channel
o ;
(A |

<Quantum channel .
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Eve

Alice and Bob: to estimate the Eve’s information |, on key

. . T Experimentalists: to maximize | g
{ |, Small: Error correction + Privacy amplification

N ; . .
A 1aI9€ @ Theorists: to quantify I,

* New protocols -> higher tolerance to noise, bit rate and distance growth

* New methods to prepare and measure states -> reduce size and cost

* Security analysis and attacks -> search for good model of non-ideal components
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Secure now.
Secure

in the future
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How it looks




EMERGING QUANTUM COMMUNICATION INDUSTRY
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QuantumCTek QUANTUMXCHANGE
2018: 2020: 2021:
SK Telecom deal at $130M valuation Quantum Unicorn IPO $13.5M Series A Funding

Valuation $2,3B in 2021 S59M valuation
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We're looking for talents!

Yury Kurochkin
yk@goqrate.com

QUANTUM COMMUNICATIONS



Entangled states
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How do we implement annihilation operator in the real experiment?

single-photon
detector

lw) trigger

low-reflectivity &
beam splitter

The scheme. A “click” indicates that a Experimental quantum
photon has been removed from |y) process tomogralphy

R. Kumar, E. Barrios, C. Kupchak and
A.L., PRL 110, 130403 (2013)

Annihilation operator is non-deterministic
« Trace of the process output is given by the “click” probability

« The process involving the annihilation operator can change the state
at a distance but cannot be used for faster than light communication
because we need to transmit information about click



Irreversibility of Measurements

Incoming photon polarized ﬁt 90°
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Incoming photon polarized at 45°
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High bit rate quantum random number generator

(a)
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Pulse driver

(b)
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2017-2018 Sberbank field tests ORATC

LAUNCHING QUANTUM SECURITY

* Two Sberbank offices

e 25km line, 8
segments, 14 dB loss

* 300 MHz pulse
25 km, 14 dB loss. repetition rate
7 80000 * BB84+ decoy
* Signal 0,175 ph/pulse

* Decoy 0,067
ph/pulse

* QBER 5,5 %
* 2 kbit/s raw key

* 0,1-0,9 kbit/s secret
key

* Key consumption 256
bit per 400s.
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QKD distance limit is driven by exponential loss

Estimated key generation rate
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Quantum repeaters

* Problem: to get 1 photon after 1000 km line you need to make : 1020 ts what s
not practical

e Practical distances are within 100 km in the external lines and within
400 km in the lab (less than 1 bit/s)

* Solution comes from classical communication, we need a repeater

 What is a repeater
* Device that captures a signal, regenerates it, and sends it further

* Classical repeater will inevitably cause noise

* Quantum repeater
* Must capture and regenerate a photon without measuring its polarization
* Requires memory for efficient operation
* Requires entangled states



We need to create quantum correlations between Alice
and Bob...

Source of entangled
photon pairs

2] The photons are likely to get lost on their way




Entanglement swapping

Source of entangled
photon pairs

Source of entangled
photon pairs

[

entangled

Long-distance entanglement can be created by entanglement swapping

A Bell measurements on modes 2 and 4 entangles modes 1 and 4
This protocol has much in common with teleportation




Quantum relay

Entanglement Entanglement Entanglement Entanglement
source source source source

entangled
Long-distance entanglement can be created by entanglement swapping
CSlout to succeed, all links must work simultaneously.
— success probability still decreases exponentially with distance.



The role of memory

Entanglement Entanglement
source source
Memory Memory Memory Memory
entan entangled Pnl.aHgIEﬂ'

« But if we had quantum-memory,
» entanglement in a link could be stored...
until entanglement in other links has been created, too.
» Bell-measurement on adjacent quantum memories...
will create the desired long-distance entanglement.
 Alice can teleport her photon to Bob



Quantum repeater

- S el

entangled

This technology is called quantum repeater
Initial idea: H. Briegel et al., 1998
In application to EIT and quantum memory: L.M. Duan et al., 2001
Quantum memory for light is essential for long-distance quantum communications.



