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CLASSICAL CRYPTOGRAPHY: private-key encryption

Classical cryptography was concerned with designing and using codes (also called
ciphers) that enable two parties to communicate secretly in the presence of an
eavesdropper who can monitor all communication between them.
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SYNTAX OF ENCRYPTION

Formally, a private-key encryption scheme is defined by specifying a message
space M along with three algorithms: a procedure for generating keys (Gen), a
procedure for encrypting (Enc), and a procedure for decrypting (Dec).

1. The key-generation algorithm Gen is a probabilistic algorithm that outputs a key
k chosen according to some distribution.

2. The encryption algorithm Enc takes as input a key k and a message m and
outputs a ciphertext c. We denote by Enc,(m) the encryption of the plaintext m
using the key k.

3. The decryption algorithm Dec takes as input a key k and a ciphertext ¢ and
outputs a plaintext m. We denote the decryption of the ciphertext ¢ using the key
k by Dec,(c).

Dec,(Enc,(m)) = m




CLASSICAL CRYPTOGRAPHY: shift cipher (Caesar’s cipher)

begin the attack now

Jk=3

EHILOQWKHDWWDFNQRZ

Encryption:

Enci(my---my) =cy---co, where ¢; = [(m; + k) mod 26

Decryption:

Decr(c1---¢e) =mq---my, where m; = [(¢; — k) mod 26

Any secure encryption scheme must have a key space that is sufficiently
large to make an exhaustive-search attack infeasible




CLASSICAL CRYPTOGRAPHY: mono-alphabetic substitution cipher

abcdefghiljklmnopqgqrstuvwixyz
XEUADNBKVMROCQFSYHWGLZIJPT

begin the attack now
1 Key space: 26!~288
EHILOQWKHDWWDFNQRZ




PRINCIPLES OF MODERN CRYPTOGRAPHY

1. Formal definitions. If you don’t understand what you want to achieve,
now can you possibly know when (or if ) you have achieved it?

. Precise Assumptions

. Proofs of security
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Kerckhoffs's principle

A cryptosystem should be secure, even Iif everything about the system,
except the key, is public knowledge




PERFECT SECRECY: Shannon’s theorem

THEOREM (Shannon’s theorem)  Let (Gen, Enc, Dec) be an en-

cryption scheme with message space M, for which |[M| = |KC| = |C|. The
scheme 1s perfectly secret if and only if:

1. Every key k € K is chosen with (equal) probability 1/|K| by algorithm Gen.

2. For every m € M and every c € C, there exists a unique key k € IC such
that Enci(m) outputs c.




PROVABLY SECURE CRYPTOGRAPHY: ONE-TIME PAD

Fix an integer £ > 0. The message space M, key space I, and ciphertext
space C are all equal to {0,1}" (the set of all binary strings of length ¢).

e Gen: the key-generation algorithm chooses a key from I = {0, 1};3
according to the uniform distribution (i.e., each of the 2° strings
in the space is chosen as the key with probability exactly 27°).

e Enc: given a key £ € {0,1}" and a message m € {0,1}", the
encryption algorithm outputs the ciphertext ¢ := k & m.

o Dec: given a key k£ € {0,1}" and a ciphertext ¢ € {0,1}", the
decryption algorithm outputs the message m := k & c.




ASYMMETRIC ENCRYPTION
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QUANTUM CRYPTOGRAPHY: BB84 protocol
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NO-CLONING THEOREM

Because of linearity of the Hilbert space, the cloning of an arbitrary quantum state is
impossible.

|a)®|0) # [a)®|a)

Let us assume that cloning is possible:
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QUANTUM CRYPTOGRAPHY: BB84 protocol

Exercise 1

Suppose Eve intercepts Alice’s photons and measures them in either the canonical or
diagonal basis (she chooses at random). She then encodes the bit she measured in the
same basis and re-sends it to Bob. What error rate will Alice and Bob register, i.e., what
fraction of bits in the secret key they created will come out differently on average?




POSTPROCESSING: error estimation

Usually, in BB84, the error rate, which is called guantum bit error rate
(QBER), Is estimated by picking a small random subset of bits with
length r from those given in the sifted key. This test string is publicly
compared by Alice and Bob and yields in a certain number of errors e.

r
BER = —
Q e

QBER should not exceed = 11%, because the best error correction
code approaches a maximal tolerated error rate of 12,9%.




POSTPROCESSING: error correction
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POSTPROCESSING: privacy amplification

Privacy amplification i1s the art of distilling highly secret shared
iInformation from a larger body of shared information that is only
partially secret.

0,1}" = {0,1}™

“Leftover hash lemma”
m=n—t—2log(1l/¢)

n — length of the raw key (in bits);
t — information (in bits) available to Eve about raw key;
£ — Security parameter.




POSTPROCESSING: privacy amplification via hashing

2-universal hash functions
{0,1}"* - {0,1}™

Toeplitz matrices can be used as 2-universal hash-functions
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BB84: realization of polarization encoding with bulk optics
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BB84: realization of polarization encoding with fiber optics
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PHASE ENCODING

Alice Bob
Bit value b4 bp b4— Pp Bit value

0 0 0 0 0

0 0 /2 3m/2 ?

1 T 0 T 1

1 b /2 /2 9 Bob A
0 2 0 2 ? i)
0 /2 2 0 0 c
1 37/2 0 3m/2 ? g
1 3m/2 /2 T 1 U

Alice
wv




Time-bin encoding
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SYNCHRONIZATION
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BB84: components to build a real system (Faraday mirror)




BB84: components to build a real system (optical circulator)
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BB84: components to build a real system (polarization maintaining fiber)
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BB84: Plug&Play system
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QUANTUM RANDOM NUMBER GENERATOR

Pseudorandom True random
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CLASSICAL vs QUANTUM PROCESS

The moment of time when the atom emits a photon
can be predicted only with some probability

50%
The gas pressure can be predicted in any moment of Cj
time (at least at principle) exactly A single photon will be reflected or transmitted in the

50:50 beamsplitter with the probability 50%







QRNG ON PHASE NOISE IN A SEMICONDUCTOR LASER
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CHALLENGES OF PRACTICAL QKD: losses

Beer’s law
n(L) = nye PL

Exercise 1

Alice sends a photon to Bob, who is 300 km away, via a fiber line. The fiber has a
loss rate of 5% per kilometer:

a) Find the loss coefficient g in that fiber (in km1).
b) What fraction of the photons sent by Alice will reach Bob?




CHALLENGES OF PRACTICAL QKD: losses

Beer’s law
n(L) = nye PL

Exercise 1

Alice sends a photon to Bob, who is 300 km away, via a fiber line. The fiber has a
loss rate of 5% per kilometer:

a) Find the loss coefficient g in that fiber (in km1).

b) What fraction of the photons sent by Alice will reach Bob?

a) n(1km) =nye#1=095n, > f =—(n0.95) = 0.0513 km~".
b) AtL =300 km we have: e Bl = e~ 15x 2 x 1077,




CHALLENGES OF PRACTICAL QKD: losses + dark counts
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QUANTUM NETWORK (QKD NETWORK)
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QUANTUM NETWORK (QKD NETWORK)
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SATELLITE QKD

(a) %y" (b) f;,ys /M
1::// Classical Classical g
Quantum Quantum
Y N\
‘'~ ~
Fall e [#
[ Station A | |  Station B |
() K4

Parity announcement

Kp® (K4 & [\’B):f;,q/é k\\\
%’t\ ® Kpg

A4 S (A

[  Station A | | Station B |




