

Bennett-Brassard 1984 (BB84) QKD protocol

Intercept-resend attack

C. H. Bennett, G. Brassard, in *Proc. Intl. Conf. on Computers, Systems, and Signal Processing (Bangalore, India),* p. 175 (1984)

Phase (time-bin) encoding, interferometric QKD channel

Detection basis:

0

 $\varphi_{\rm B} =$

: X

 $\pi/2$: Z

$$\phi_{\rm A} = 0 \text{ or } \pi/2 : 0$$

 $\pi \text{ or } 3\pi/2 : 1$

Spontaneous parametric down-conversion

Entangled-pair QKD

 $= (|D_1, A_2\rangle + |A_1, D_2\rangle)/\sqrt{2}$

A. Ekert, Phys. Rev. Lett. **67**, 661 (1991) C. H. Bennett, G. Brassard, N. D. Mermin, Phys. Rev. Lett. **68**, 557 (1992)

Entangled-pair QKD over 1120 km

J. Yin *et al.,* Nature **582**, 501 (2020)

Quantum key distribution (BB84 protocol) using polarized photons

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/BB84_photons/BB84_photons.html

EDU-QCRY1 EDU-QCRY1/M Quantum Cryptography Demonstration Kit

Manual

Certification of cryptographic tools

Implementation security of quantum communications

physically secure, characteristics known physically secure, characteristics known

Kerckhoffs' principle:

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

A. Kerckhoffs, J. des Sciences Militaires 9, 5 (1883)

Everything about the system that is not explicitly secret is known to the enemy

Attack	Target component	Tested system
Distinguishability of decoy states A. Huang <i>et al.,</i> Phys. Rev. A 98 , 012330 (2018)	laser in Alice	3 research systems
Intersymbol interference K. Yoshino <i>et al.,</i> poster at QCrypt (2016)	intensity modulator in Alice	research system
Laser damage V. Makarov <i>et al.</i> , Phys. Rev. A 94 , 030302 (2016); A. Huar Spatial efficiency mismatch M. Rau <i>et al.</i> , IEEE J. Sel. Top. Quantum Electron. 21 , 660	any ng <i>et al.,</i> poster at QCrypt (2018) receiver optics 0905 (2015); S. Sajeed <i>et al.,</i> Phys. F	5 commercial & 1 research systems 2 research systems Rev. A 91 , 062301 (2015)
S. Sajeed <i>et al.,</i> Phys. Rev. A 91 , 032326 (2015)	classical watchdog detector	ID Quantique
Trojan-horse I. Khan <i>et al.,</i> presentation at QCrypt (2014)	phase modulator in Alice	SeQureNet
Trojan-horse N. Jain <i>et al.,</i> New J. Phys. 16 , 123030 (2014); S. Sajeed	phase modulator in Bob et al., Sci. Rep. 7 , 8403 (2017)	ID Quantique
Detector saturation H. Qin, R. Kumar, R. Alleaume, Proc. SPIE 88990N (2013)	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev. A 87	classical sync detector 7, 062313 (2013)	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. Rev. A &	intensity modulator 36, 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research system
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research system
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 06233	Faraday mirror 31 (2011)	(theory)
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011); L. Lyderser	single-photon detector n <i>et al.,</i> Nat. Photonics 4 , 686 (2010)	ID Quantique, MagiQ research systems

Angi Huang tests countermeasure in Clavis2

II.II

Photo ©2015 Vadim Makarov

Polarization receiver for satellite

C. J. Pugh et al., Quantum Sci. Technol. 2, 024009 (2017)

Polarization analyzer

Polarization analyzer

J.-P. Bourgoin *et al.,* Phys. Rev. A **92**, 052339 (2015)

Efficiency mismatch in polarization analyzer

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

Counter-attack

V. Makarov et al., Phys. Rev. A 94, 030302 (2016)

Thorlabs P20S pinhole 13 µm thick stainless steel

3.6 W, 810 nm laser

0

1 mm

* Sound was added later

Thorlabs P20S pinhole 13 µm thick stainless steel

3.6 W, 810 nm laser

* Sound was added later

Security audit

System

Report Tests

(ООО Квантовые коммуникации)

<u>S. Sajeed *et al.,* Sci. Rep. **11**, 5110 (2021)</u>

QAUE

New 312.5 MHz system (2021) ongoing

Certification standards are being drafted since 2019 in

Industry standards group in QKD

Example of initial analysis report

TABLE I: Summary of potential security issues in			system.				
Potential security issue	С	Q	Target component	Brief description	Requirements for complete analysis	Lab testing needed?	Risk evaluation
	CX	$Q_{1-5,7}$			Complete circuit diagram of	Yes	High
	CX	Q1-3		See Ref. 3.	Complete circuit diagram of	Yes	High
	CX	Q1,2		See Ref. 4.	Complete circuit diagram of	Yes	High
	C0	Q2,3		Manufacturer needs to implement	Known issue. The manufacturer should patch it.	No	High
	CX	Q3-5,7			Known issue. The manufacturer should	No	Medium
	CX	Q1			Model numbers of all optical components; complete receiver for testing.	Yes	High
	CX	Q1–5			Complete circuit diagram of settings of	Yes	Insufficient information
	CX	Q1–3			Algorithm of	Yes	Low
	CX	Q1,2		See Ref. 13.	Model numbers of	Yes	Medium
	CX	Q4,5			Full system algorithms; complete system if decided to test.	Maybe	Low
	CX	Q1,3-5		Eve can	Algorithm for	Maybe	Low

Quantum hacking lab vad1.com/lab