# Quantum cryptography cations (continuing

Vadim Makarov

RQC

HATEL D

A ANALI

-

T

1

# Communication security you enjoy daily

Paying by credit card in a supermarket **Cell phone conversations, SMS** Email, chat, online calls Secure browsing, shopping online, content delivery Cloud storage and communication between your devices Software updates on your computer, phone, tablet **Online banking** Off-line banking: the *bank* needs to communicate internally Electricity, water: the *utility* needs to communicate internally Car keys, electronic door keys, access control **Government services (online or off-line)** Medical records at your doctor, hospital Bypassing government surveillance and censorship CCTV, industrial automation, military, spies...

# A (very) brief history of cryptography

**Broken?** 

| Monoalphabetic cipher                                      | invented ~50 BC (J. Caesar) | ~850 (Al-Kindi)                                    |
|------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| Nomenclators (code books)                                  | ~1400 - ~1800               | $\checkmark$                                       |
| Polyalphabetic (Vigenère)                                  | 1553 - ~1900                | 1863 (F. W. Kasiski)                               |
| •••                                                        |                             |                                                    |
|                                                            |                             |                                                    |
| Polyalphabetic electromechanical<br>(Enigma, Purple, etc.) | 1920s – 1970s               | $\checkmark$                                       |
| •••                                                        |                             |                                                    |
| DES                                                        | 1977 – 2005                 | 1998: 56 h (EFF)                                   |
| Public-key crypto (RSA, elliptic-curv                      | <b>ve)</b> 1977 –           | will be once we have q.<br>computer (P. Shor 1994) |
| AES                                                        | 2001 —                      | ?                                                  |
| Public-key crypto ('quantum-safe')                         | in development              | ?                                                  |

# Breaking cryptography retroactively



Photo ©2013 AP / Rick Bowmer

#### Mosca theorem

Time

y (re-tool infrastructure)x (encryption needs be secure)z (time to build large quantum computer)

#### If x + y > z, then worry.

M. Mosca, http://eprint.iacr.org/2015/1075

# A (very) brief history of cryptography

**Broken?** 

| Monoalphabetic cipher                                      | invented ~50 BC (J. Caesar)  | ~850 (Al-Kindi)                                    |
|------------------------------------------------------------|------------------------------|----------------------------------------------------|
| Nomenclators (code books)                                  | ~1400 - ~1800                | $\checkmark$                                       |
| Polyalphabetic (Vigenère)                                  | 1553 - ~1900                 | 1863 (F. W. Kasiski)                               |
| •••                                                        |                              |                                                    |
| One-time pad                                               | invented 1918 (G. Vernam)    | impossible<br>(C. Shannon 1949)                    |
| Polyalphabetic electromechanical<br>(Enigma, Purple, etc.) | 1920s – 1970s                | $\checkmark$                                       |
| •••                                                        |                              |                                                    |
| DES                                                        | 1977 – 2005                  | 1998: 56 h (EFF)                                   |
| Public-key crypto (RSA, elliptic-curv                      | <b>ve)</b> 1977 –            | will be once we have q.<br>computer (P. Shor 1994) |
| AES                                                        | 2001 –                       | ?                                                  |
| Quantum cryptography                                       | invented 1984, in developmer | t impossible*                                      |
| Public-key crypto ('quantum-safe')                         | in development               | ?                                                  |

## **One-time pad**



# A (very) brief history of cryptography

**Broken?** 

| Monoalphabetic cipher                                      | invented ~50 BC (J. Caesar)  | ~850 (Al-Kindi)                                    |
|------------------------------------------------------------|------------------------------|----------------------------------------------------|
| Nomenclators (code books)                                  | ~1400 - ~1800                | $\checkmark$                                       |
| Polyalphabetic (Vigenère)                                  | 1553 - ~1900                 | 1863 (F. W. Kasiski)                               |
| •••                                                        |                              |                                                    |
| One-time pad                                               | invented 1918 (G. Vernam)    | impossible<br>(C. Shannon 1949)                    |
| Polyalphabetic electromechanical<br>(Enigma, Purple, etc.) | 1920s – 1970s                | $\checkmark$                                       |
| •••                                                        |                              |                                                    |
| DES                                                        | 1977 – 2005                  | 1998: 56 h (EFF)                                   |
| Public-key crypto (RSA, elliptic-curv                      | <b>re)</b> 1977 –            | will be once we have q.<br>computer (P. Shor 1994) |
| AES                                                        | 2001 —                       | ?                                                  |
| Quantum cryptography                                       | invented 1984, in developmer | impossible*                                        |
| Public-key crypto ('quantum-safe')                         | in development               | ?                                                  |

# Quantum communication primitives

Money Key distribution **Secret sharing Digital signatures** Superdense coding Fingerprinting **Oblivious transfer Bit commitment Coin-tossing Cloud computing Software leasing** Bitcoin **Bell inequality testing Teleportation Entanglement swapping** Interaction-free measurement

Random number generators

#### Advantages over classical primitives:

| Unconditionally secure? | Less<br>resources? | Other quantum advantages? |  |
|-------------------------|--------------------|---------------------------|--|
| •                       |                    |                           |  |
|                         |                    |                           |  |
|                         |                    |                           |  |
| Impossible              |                    | •                         |  |
| Impossible              |                    |                           |  |
|                         |                    |                           |  |
|                         | •                  |                           |  |
| ) (no classical         | equivalent)        |                           |  |
|                         |                    |                           |  |
|                         |                    |                           |  |

# Quantum communication primitives

Money **Key distribution** Secret sharing **Digital signatures** Superdense coding Fingerprinting **Oblivious transfer Bit commitment Coin-tossing Cloud computing** Software leasing Bitcoin **Bell inequality testing Teleportation Entanglement swapping** Interaction-free measurement

**Random number generators** 

S. Wiesner, unpublished circa 1970, Sigact News **15**, 78 (1983); S. Aaronson, P. Christiano, Proc. STOC'12, 41 (2012) idguantique.com, guantum-info.com, gasky.com, gograte.com W. P. Grice *et al.*, Opt. Express **23**, 7300 (2015). R. Collins et al., Phys. Rev. Lett. 113, 040502 (2014) C. H. Bennett, S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) J.-Y. Guan et al., Phys. Rev. Lett. **116**, 240502 (2016) C. Erven et al., Nat. Commun. 5, 3418 (2014) T. Lunghi et al., Phys. Rev. Lett. 111, 180504 (2013) A. Pappa et al., Nat. Commun. 5, 3717 (2014) S. Barz et al., Science **335**, 303 (2012) A. Broadbent et al., Lect. Notes Comp. Sci. 13042, 90 (2021) J. Jogenfors, Proc. IEEE ICBC 2019, 245 (2019) B. Hensen *et al.*, Nature **526**, 682 (2015) X.-S. Ma et al., Nature 489, 269 (2012) M. Żukowski *et al.,* Phys. Rev. Lett. **71**, 4287 (1993) A. C. Elitzur, L. Vaidman, Found. Phys. 23, 987 (1993)

idquantique.com, picoquant.com

# Key distribution for encryption



Quantum key distribution transmits secret key by sending quantum states over open channel.

# Quantum key distribution (QKD)

# Alice





Prepares photons

$$(0), \qquad (1)$$

$$(0), \qquad (1)$$





Eavesdropping introduces errors

Bob



Measures photons



C. H. Bennett, G. Brassard (1984)

# Post-processing in QKD



C. H. Bennett et al., J. Cryptology 5, 3 (1992); N. Lütkenhaus, Phys. Rev. A 59, 3301 (1999)

# **Dealing with errors**

Errors due to imperfections and Eve. Must assume that all errors are due to Eve!

- Error correction: standard classical protocols
- Privacy amplification:



# **Commercial QKD**

#### **Classical encryptors:**

L2, 2 Gbit/s L2, 10 Gbit/s L3 VPN, 100 Mbit/s

WDMs

7 km (fiber length)

1

Ò

1

Key manager

**QKD** to another node (4 km)

**QKD** to another node (14 km)

www.swissquantum.com ID Quantique *Cerberis* system (2010)

# **Today: trusted-node repeater**



#### **Future: quantum repeater**





### **Trusted-node network**



M. Sasaki et al., Opt. Express 19, 10387 (2011)



Shanghai control center of the Chinese quantum key distribution network and satellite

# Global quantum key distribution



# CAS Strategic Priority Research Program: Quantum Satellite

Intercontinental quantum key distribution



Slide presented by Jian-Wei Pan at TyQI conference, Shanghai, June 27–30, 2016

Review of results: C.-W. Lu, Y. Cao, C.-Z. Peng, J.-W. Pan, Rev. Mod. Phys. 94, 035001 (2022)



Ground station in Zvenigorod communicates with Micius satellite (18 Jan 2021)

QSpace

Ground station in Zvenigorod communicates with Micius satellite (18 Jan 2021)

# Components of quantum-optical systems

PhotonTransmission"Processing"Photonsourceschannelselementsdetectors

### **Attenuated laser source**



S. J. van Enk, C. A. Fuchs, arXiv:quant-ph/0111157



P. G. Kwiat *et al.,* Phys. Rev. Lett. **75**, 4337 (1995)

Image reprinted from: Wikipedia

# Transmission in free space



#### Atmosphere: loss, turbulence





Images reprinted from: https://demonstrations.wolfram.com/GaussianBeamPropagationThroughTwoLenses/; Wikipedia; J.-P. Bourgoin et al., New J. Phys. **15**, 023006 (2013); R. Ursin et al., Nat. Phys. **3** 481 (2007)

# **Transmission in optical fiber**

-OH Absorption

Peaks

Si

1.0

1.2

Wavelength (µm)

.30

Infrared Absorption Tail

From Lattice

Transitions

InGaAsP

1.4

1.55

Single-mode fiber

100

Fiber Attenuation (dB/km)

50

20

10

5

2

0.5

0.2

0.1

0.05

0.6

Red (Visible)

AlGaAs

0.8

0.85

125  $\mu$ m diameter cladding fused quartz,  $n_1 = 1.45$ 

8 µm diameter core







# Fiber vs. beam in vacuum: loss scaling



# Polarizers

Laser

#### **Birefringent polarizing beamsplitter**



# Polarizing beamsplitter cube s polarization Thin film multi-layer stack p polarization p polarization Cement

Images reprinted from: Thorlabs; J. L. Pezzaniti, R. A. Chipman, Appl. Opt. 33, 1916 (1994

# Beamsplitters



50:50 10:90 1:99

#### Fiber-optic fused beamsplitter (or coupler)



# Attenuators

#### Absorbing or partially reflecting coated glass







# Wavelength filters

#### Colored glass



#### Wavelength filters **Anodized Aluminum Ring Interference filter**



#### Fiber Bragg grating



ىمىمىمى

 $n_2$ 



Images reprinted from: Thorlabs; Wikipedia; F. Seng et al., Appl. Opt. 55, 7179 (2016)

# **Polarization controller (slow)**

**7**4



 $^{\lambda}/_{2}$ 

 $\frac{\lambda}{4}$ 

# **Polarization modulator (fast)**



#### **Pockels cell**

# Phase modulator



# Intensity modulator



#### **Mach-Zehnder interferometer**



mages reprinted from: Optical Communication Technology, P. Pinho, ed., IntechOpen (2017); Thorlabs

# **Directional elements**

#### Isolator (an "optical diode")







#### Circulator

$$\begin{array}{ccc} 1 & 2 & 1 \rightarrow 2 \\ \hline & 2 \rightarrow 3 \\ \hline & 3 \end{array}$$



# **Optical power meters**

#### Thermal

> 10 µW





# Photodiode > 0.

> 0.1 nW



# **Single-photon detectors**

Photon energy

$$E = \frac{hc}{\lambda} = \frac{19.9 \times 10^{-26}}{1.55 \times 10^{-6}} = 1.28 \times 10^{-19} \text{ J}$$

$$\clubsuit$$
Need a gain mechanism

#### **Photomultiplier tube**



Image reprinted from: http://www.frankswebspace.org.uk/ScienceAndMaths/physics/physicsGCE/D1-5.htr

# Single-photon avalanche photodiode



Images reprinted from: https://www.photonicsonline.com/doc/avalanche-photodiodes-theory-and-applications-0001; S. Cova et al., J. Mod. Opt. 51, 1267 (2004

# Superconducting single-photon detectors

#### Superconducting nanowire

|   | 6          | anis kinemik, kin | alastan I    | Read D    |
|---|------------|-------------------|--------------|-----------|
|   |            |                   |              |           |
|   |            |                   |              |           |
| - |            |                   |              |           |
|   | Sala sur a |                   | allana anti- |           |
|   |            |                   |              |           |
|   |            |                   |              |           |
|   |            |                   |              |           |
|   |            |                   |              |           |
|   |            |                   |              |           |
|   |            |                   |              |           |
|   |            |                   |              |           |
|   |            |                   |              | 1         |
|   |            |                   |              | $1 \mu n$ |





Images reprinted from: R. Sobolewski et al., IEEE Trans. Appl. Supercond. 13, 1151 (2003)

#### **Transition-edge sensor**





Images reprinted from: B. Cabrera et al., Appl. Phys. Lett. 73, 735 (1998); A.J. Miller et al., Appl. Phys. Lett. 83, 791 (2003)

# **Cooling requirements**

Photomultiplier: room temperature

#### Avalanche photodiode: -50 °C



**Thermoelectric cooling** 

5 mm

 $\mathbf{0}$ 

#### Superconducting nanowire: 4 K Transition-edge sensor: 100 mK



# **Assembled fiber optics**

#### **Quantum key distribution unit Alice (ID Quantique Clavis2)**



100 mm

# **Assembled free-space optics**

Bob's polarization analyzer with single-photon detectors



J. G. Rarity, P. C. M. Owens, P. R. Tapster, J. Mod. Opt. 41, 2435 (1994)

# **Assembled free-space optics**

#### Bob's polarization analyzer with single-photon detectors



J. G. Rarity, P. C. M. Owens, P. R. Tapster, J. Mod. Opt. **41**, 2435 (1994)

# **Emerging: integrated optics** Quantum key distribution system



P. Sibson *et al.,* Nat. Commun. **8**, 13984 (2017) A. W. Elshaari *et al.,* Nat. Photonics **14**, 285 (2020)

# Bennett-Brassard 1984 (BB84) QKD protocol



# **Intercept-resend** attack





C. H. Bennett, G. Brassard, in *Proc. Intl. Conf. on Computers, Systems, and Signal Processing (Bangalore, India),* p. 175 (1984)

# Phase (time-bin) encoding, interferometric QKD channel

![](_page_50_Figure_1.jpeg)

#### **Detection basis:**

0

 $\varphi_{\rm B} =$ 

: X

 $\pi/2$  : Z

$$\phi_{\rm A} = 0 \text{ or } \pi/2 : 0$$
  
 $\pi \text{ or } 3\pi/2 : 1$ 

# **Spontaneous parametric down-conversion**

![](_page_51_Figure_1.jpeg)

P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995)

# **Entangled-pair QKD**

![](_page_52_Figure_1.jpeg)

 $= (|D_1, A_2\rangle + |A_1, D_2\rangle)/\sqrt{2}$ 

A. Ekert, Phys. Rev. Lett. **67**, 661 (1991) C. H. Bennett, G. Brassard, N. D. Mermin, Phys. Rev. Lett. **68**, 557 (1992)

# Entangled-pair QKD over 1120 km

![](_page_53_Figure_1.jpeg)

J. Yin *et al.,* Nature **582**, 501 (2020)

![](_page_54_Figure_0.jpeg)

![](_page_54_Picture_2.jpeg)

#### Quantum key distribution (BB84 protocol) using polarized photons

![](_page_54_Figure_4.jpeg)

https://www.st-andrews.ac.uk/physics/quvis/simulations\_html5/sims/BB84\_photons/BB84\_photons.html

![](_page_55_Picture_0.jpeg)

EDU-QCRY1 EDU-QCRY1/M Quantum Cryptography Demonstration Kit

Manual

![](_page_55_Picture_3.jpeg)

![](_page_55_Picture_4.jpeg)

![](_page_56_Picture_0.jpeg)

Photo ©2020 Vadim Makarov / RQC

# **Polarization receiver for satellite**

![](_page_57_Picture_1.jpeg)

C. J. Pugh et al., Quantum Sci. Technol. 2, 024009 (2017)

# **Polarization analyzer**

![](_page_58_Picture_1.jpeg)

# **Polarization analyzer**

![](_page_59_Picture_1.jpeg)

J.-P. Bourgoin *et al.,* Phys. Rev. A **92**, 052339 (2015)

# Efficiency mismatch in polarization analyzer

![](_page_60_Figure_1.jpeg)

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

![](_page_61_Figure_0.jpeg)

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

# **Counter-attack**

![](_page_62_Figure_1.jpeg)

V. Makarov et al., Phys. Rev. A 94, 030302 (2016)

**Thorlabs P20S pinhole** 13 µm thick stainless steel

#### 3.6 W, 810 nm laser

0

1 mm

\* Sound was added later

**Thorlabs P20S pinhole** 13 µm thick stainless steel

#### 3.6 W, 810 nm laser

\* Sound was added later

![](_page_64_Figure_3.jpeg)