

S THERE AND THE TOP OF TOP OF THE TOP OF TOP OF

nputing

-

T

20

Lecture at QKD summer school, IQC, 20 August 2015

Communication security you enjoy daily

Paying by credit card in a supermarket Cell phone conversations, SMS Email, chat, online calls Secure browsing, shopping online **Cloud storage and communication between your devices** Software updates on your computer, phone, tablet **Online banking** Off-line banking: the *bank* needs to communicate internally Electricity, water: the *utility* needs to communicate internally Car keys, electronic door keys, access control **Government services (online or off-line)** Medical records at your doctor, hospital Bypassing government surveillance and censorship Security cameras, industrial automation, military, spies...

Encryption and key distribution

Public key cryptography

E.g., RSA (Rivest-Shamir-Adleman) Elliptic-curve

Based on hypothesized one-way functions

Unexpected advances in classical cryptanalysis

Shor's factorization algorithm for quantum computer

P. W. Shor, SIAM J. Comput. 26, 1484 (1997)

Diagram courtesy M. Mosca

How close is quantum computer?

Fig. 1. Seven stages in the development of quantum information processing. Each advancement requires mastery of the preceding stages, but each also represents a continuing task that must be perfected in parallel with the others. Superconducting qubits are the only solid-state implementation at the third stage, and they now aim at reaching the fourth stage (green arrow). In the domain of atomic physics and quantum optics, the third stage had been previously attained by trapped ions and by Rydberg atoms. No implementation has yet reached the fourth stage, where a logical qubit can be stored, via error correction, for a time substantially longer than the decoherence time of its physical qubit components.

M. H. Devoret, R. J. Schoelkopf, "Superconducting circuits for quantum information: An outlook," Science **339**, 1169 (2013)

How close is quantum computer?

Improvement of coherence times for the "typical best" results associated with the first versions of major design changes. The blue, red, and green symbols refer to qubit relaxation, qubit decoherence, and cavity lifetimes, respectively. Innovations were introduced to avoid the dominant decoherence channel found in earlier generations. So far an ultimate limit on coherence seems not to have been encountered.

M. H. Devoret, R. J. Schoelkopf, Science **339**, 1169 (2013)

Figure 5

Progress toward reaching long dephasing (T_2) times for superconducting qubits. (Red dashed line) Minimum necessary for fault-tolerant quantum computer, based on a 30-ns two-gate time. (Yellow field) Predicted improvements in T_2 .

M. Steffen *et al.,* "Quantum computing: An IBM perspective," IBM J. Res. Dev. **55**, 13 (2011)

Quantum computers capable of catastrophically breaking our public-key cryptography infrastructure are a medium-term threat.

Quantum-safe cryptographic infrastructure

"post-quantum" cryptography + quantum cryptography

- Classical tools deployable without quantum technologies
- Believed/hoped to be secure against quantum computer attacks of the future

- Quantum tools requiring some quantum technologies (typically less than a large-scale quantum computer)
- Typically no computational assumptions and thus known to be secure against quantum attacks

Both sets of cryptographic tools can work very well together in quantum-safe cryptographic ecosystem.

Encryption and key distribution

Quantum key distribution transmits secret key by sending quantum states over open channel.

Quantum key distribution (QKD)

Dealing with errors

Errors due to imperfections and Eve. Must assume that all errors are due to Eve!

- Error correction: standard classical protocols
- Privacy amplification:

Free-space QKD

Alice on La Palma

T. Schmitt-Manderbach et al., Phys. Rev. Lett. 98, 010504 (2007)

Alice: Polarized photon source

S. Nauerth et al., New J. Phys. 11, 065001 (2009)

Single-photon sources

Attenuated laser

Bob: Polarization analyzer with single-photon detectors

J. G. Rarity, P. C. M. Owens, P. R. Tapster, J. Mod. Opt. 41, 2435 (1994)

Polarization analyzer

Polarization analyzer

J.-P. Bourgoin *et al.,* unpublished

Polarization analyzer

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

Single-photon detectors

Photomultiplier tube

Avalanche photodiode

Images reprinted from: http://www.frankswebspace.org.uk/ScienceAndMaths/physics/physicsGCE/D1-5.htm; S. Cova et al., J. Mod. Opt. 51, 1267 (2004)

Single-photon detectors

Superconducting nanowire

		dad o bioregoide, kie	aning mark	
				5
	antanan antanan ar se Cantanan			
				-
C				
				5
				3
			-	i µill

Images reprinted from: R. Sobolewski et al., IEEE Trans. Appl. Supercond. 13, 1151 (2003)

Transition-edge sensor

Images reprinted from: B. Cabrera et al., Appl. Phys. Lett. 73, 735 (1998); A.J. Miller et al., Appl. Phys. Lett. 83, 791 (2003)

End of lecture 1

Polarization encoding

Phase encoding, interferometric QKD channel

Detection basis:

$$\phi_{\rm A} = 0$$
 or $\pi/2$: 0
 π or $3\pi/2$: 1

$$\varphi_{\mathbf{B}} = \mathbf{0} : \mathbf{X}$$

$$\pi/2$$
 : Z

Plug-and-play scheme

D. Stucki et al., New J. Phys. 4, 41 (2002)

ID Quantique Clavis2 QKD system

Dual key agreement

ID Quantique *Cerberis* system (2010)

Q

Ø

Commercial QKD

Classical encryptors:

L2, 2 Gbit/s L2, 10 Gbit/s L3 VPN, 100 Mbit/s

WDMs

Key manager

QKD to another node (4 km)

QKD to another node (14 km)

www.swissquantum.com ID Quantique Cerberis system (2010)

Trusted-node repeater

Trusted-node network

M. Sasaki et al., Opt. Express 19, 10387 (2011)

Quantum Backbone

- Total Length 2000 km
- 2013.6-2016.12
- 32 trustable relay nodes31 fiber links
- Metropolitan networks

 Existing: Hefei, Jinan
 New: Beijing, Shanghai

 Customer: China Industrial
 & Commercial Bank; Xinhua
 News Agency; CBRC

Q. Zhang, talk at QCrypt 2014

The Battelle quantum network

Plans:

N. Walenta et al., poster at QCrypt 2014

Video ©2012 IQC / group of T. Jennewein

Video © group of P. Villoresi / ESA

End of lecture 2

Quantum hacking

Security model of QKD

Attack

Target componentTested system

Spatial efficiency mismatch M Rau <i>et al.,</i> IEEE J. Quantum Electron. 21 , 6600905 (2015	receiver optics 5); S. Sajeed <i>et al.,</i> Phys. Rev. A 91 , 0	research system
Pulse energy calibrationoS. Sajeed et al., Phys. Rev. A 91, 032326 (2015)	classical watchdog detector	ID Quantique
Trojan-horse I. Khan <i>et al.,</i> presentation at QCrypt (2014)	phase modulator in Alice	SeQureNet
Trojan-horse N. Jain <i>et al.,</i> New J. Phys. 16 , 123030 (2014)	phase modulator in Bob	ID Quantique*
Detector saturation H. Qin, R. Kumar, R. Alleaume, Proc. SPIE 88990N (2013)	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev. A 87,	classical sync detector 062313 (2013)	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. Rev. A 8	intensity modulator 6, 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research system
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research system
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 06233	Faraday mirror	(theory)
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011); L. Lydersen	single-photon detector et al., Nat. Photonics 4, 686 (2010)	ID Quantique, MagiQ research system
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Phys. 12 , 113026 (2010)	phase modulator in Alice	ID Quantique*

* Attack did not break security of the tested system, but may be applicable to a different implementation.

Example 1: academic

Photon-number-splitting attack

C. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, J. Cryptology 5, 3 (1992)

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000)

N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000)

S. Félix, N. Gisin, A. Stefanov, H. Zbinden, J. Mod. Opt. 48, 2009 (2001)

N. Lütkenhaus, M. Jahma, New J. Phys. 4, 44 (2002)

Decoy-state protocol

W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)

SARG04 protocol

V. Scarani, A. Acín, G. Ribordy, N. Gisin, Phys. Rev. Lett. 92, 057901 (2004)

Distributed-phase-reference protocols

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002)

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. A. 68, 022317 (2003)

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, V. Scarani, arXiv:quant-ph/0411022v1 (2004)

Video ©2011 Marc Weber Tobias

1001

True randomness?

True randomness?

Issue reported patched, as of January 2010

Do we trust the manufacturer?

Many components in QKD system can be Trojan-horsed:

- access to secret information
- electrical power
- way to communicate outside or compromise security

ID Quantique Clavis2 QKD system

Quantis RNG: what's inside?

G. Ribordy, O. Guinnard, US patent appl. US 2007/0127718 A1 (filed in 2006) I. Radchenko *et al.,* unpublished

Double clicks

– occur naturally because of detector dark counts, multi-photon pulses... Discard them?

Intercept-resend attack... with a twist:

Proper treatment for double clicks: assign a random bit value.

N. Lütkenhaus, Phys. Rev. A **59**, 3301 (1999) T. Tsurumaru & K. Tamaki, Phys. Rev. A **78**, 032302 (2008)

End of lecture 3

Trojan-horse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Trojan-horse attack experiment

Artem Vakhitov tunes up Eve's setup

Trojan-horse attack for plug-and-play system

Eve gets back one photon \rightarrow in principle, extracts 100% information

N. Gisin et al., Phys. Rev. A 73, 022320 (2006)

Countermeasures?

D. Stucki et al., New J. Phys. 4, 41 (2002)

Countermeasures for plug-and-play system

S. Sajeed et al., Phys. Rev. A 91, 032326 (2015)

Bob: none

(one consequence: SARG protocol may be insecure)

N. Jain et al., New J. Phys. 16, 123030 (2014)

Attack example: avalanche photodetectors (APDs)

Faked-state attack in APD linear mode

Blinding APD with bright light

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Photo ©2010 Vadim Makarov

Lars Lydersen testing MagiQ Technologies QPN 5505

Proposed full eavesdropper

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4-5, 2009

Entanglement-based QKD

M. P. Peloso et al., New J. Phys. 11, 045007 (2009)

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4–5, 2009

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| < 2\sqrt{2}$

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011); N. Sultana, V. Makarov, unpublished

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| \le 2\sqrt{2}$

Passive basis choice: $|S| \le 4$, click probability = 100%Active basis choice: $|S| \le 4 (2\sqrt{2})$, click probability = 50% (66.7%)

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011); S. Sajeed, N. Sultana et al., unpublished

Countermeasures to detector attacks?

Industrial countermeasure (ID Quantique)

A. Huang et al., unpublished

IQC Institute for Quantum Computing

Quantum hacking lab

www.vad1.com/lab

Quantum hacking lab

www.vad1.com/lab