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Has anything changed since 2002?

QKD is commercial Market:
Deployed in networks
Implementation security is taken seriously

Quantum computer not built Market: 2 sold*
Factorization records: 15 (2001)

21 (2012)

56153 (2014)**
Steady improvement in experiment and theory

Several communication primitives with decisive quantum
advantages

*D-Wave, not really a quantum computer?
**Not by Shor’s algorithm



Encryption and key distribution
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Public key cryptography

E.g., RSA (Rivest-Shamir-Adleman)
Elliptic-curve

Based on hypothesized one-way functions

Unexpected advances in classical cryptanalysis

Shor’s factorization algorithm for quantum computer
P. W. Shor, SIAM J. Comput. 26, 1484 (1997)

Time to build large quantum computer

Re-tool infrastructure Encryption needs be secure
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How close is quantum computer?

Fault-tolerant quantum computation

Algorithms on multiple logical qubits

Operations on single logical qubits

, Logical memory with longer lifetime than physical qubits

Complexity

QND measurements for error correction and control

Algorithms on multiple physical qubits

Operations on single physical qubits

Time

Fig. 1. Seven stages in the development of quantum information processing. Each advancement requires
mastery of the preceding stages, but each also represents a continuing task that must be perfected in
parallel with the others. Superconducting qubits are the only solid-state implementation at the third
stage, and they now aim at reaching the fourth stage (green arrow). In the domain of atomic physics and
quantum optics, the third stage had been previously attained by trapped ions and by Rydberg atoms. No
implementation has yet reached the fourth stage, where a logical qubit can be stored, via error correction,
for a time substantially longer than the decoherence time of its physical qubit components.

M. H. Devoret, R. J. Schoelkopf, Science 339, 1169 (2013)



How close is quantum computer?
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Fig. 3. Examples of the “Moore’s law” type of exponential scaling in performance

of superconducting qubits during recent years.

2012

Improvement of
coherence times for the “typical best” results associated with the first versions of
major design changes. The blue, red, and green symbols refer to qubit relaxation,
qubit decoherence, and cavity lifetimes, respectively. Innovations were introduced
to avoid the dominant decoherence channel found in earlier generations. So far
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an ultimate limit on coherence seems not to have been encountered.

M. H. Devoret, R. J. Schoelkopf,
Science 339, 1169 (2013)
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Progress toward reaching long dephasing (7 ) times for superconducting
qubits. (Red dashed line) Minimum necessary for fault-tolerant quantum
computer, based on a 30-ns two-gate time. (Yellow field) Predicted
improvements in 75.

M. Steffen et al., “Quantum computing: An IBM
perspective,” IBM J. Res. Dev. 585, 13 (2011)



Quantum computers capable of catastrophically
breaking our public-key cryptography infrastructure
are a medium-term threat.

Quantum-safe cryptographic infrastructure

“post-quantum” cryptography = quantum cryptography

- Classical tools deployable without * Quantum tools requiring some
quantum technologies quantum technologies (typically less
than a large-scale quantum computer)
- Believed/hoped to be secure  Typically no computational
against quantum computer assumptions and thus known to be
attacks of the future secure against quantum attacks

Both sets of cryptographic tools can work very well together in quantum-safe cryptographic ecosystem.

Slide courtesy M. Mosca
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Encryption and key distribution
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Quantum key distribution (QKD)
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Free-space QKD
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T. Schmitt-Manderbach et al., Phys. Rev. Lett. 98, 010504 (2007)



Phase encoding, interferometric QKD channel
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ID Quantique Clavis2 QKD system
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Dual key agreement
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Commercial QKD ﬁi b

T

7
Classical encryptors: o
L2, 2 Gbit/s o
L2, 10 Gbit/s 52
L3 VPN, 100 Mbit/s =
e e
WDMs —
-
Key manager -
=
= \bf

QKD to another node - y
(4 km) E

QKD to another node
(14 km)

www.swissquantum.com o
ID Quantique Cerberis system (2010)



Trusted-node repeater
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Trusted-node network

Koga

M Agent

Kogangi-2

) 2

Secl

=

3
i d 0
M il | ¢
O
_ ,o’b
. o
i )
s 6\6‘
) 00
Otemachi-1
Otemachi-
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M Total Length 2000 km ,
¥ 2013.6-2016.12 i Beijing @
M 32 trustable relay nodes '

31 fiber links

W Metropolitan networks

Existing: Hefei, Jinan

New: Beijing, Shanghai
® Customer: China Industrial

& Commercial Bank; Xinhua

News Agency; CBRC

SHELLETR

Q. Zhang, talk at QCrypt 2014



The Battelle quantum network
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Quantum | .
communication Advantages over classical primitives:

primitives Unconditio’?ally Less i Other quantum
secure” resources? advantages?

Key distribution O

Secret sharing |

Digital signatures @

Superdense coding
Fingerprinting
Oblivious transfer

Bit commitment
Coin-tossing

Cloud computing

Bell inequality testing
Teleportation (no classical equivalent)
Entanglement swapping

Random number generators O



Quantis RNG: what’s inside?
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G. Ribordy, O. Guinnard, US patent appl. US 2007/0127718 A1 (filed in 2006)

|. Radchenko et al., unpublished



Quantum digital signatures

Alice:
1. Distributes latent signatures
“0” “1” Bob: measures
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FTFXXFEEX ...

2. Signs: reveals bit and latent sequence
1, =% o

Bob: verifies
measurement results

v

Charlie: verifies
measurement results

R. Collins et al., Phys. Rev. Lett. 113, 040502 (2014)



Quantum digital signatures
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Blind quantum computing

Client
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Prepares qubits and sends them to
quantum server
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Blind quantum computing

Optical elements:

4. Measurement
and sending of
results

| Quarter-wave plate
ﬁ Half-wave plate

r"/ BBO crystal

’ Polarization controller
¢ Polarizing beam splitter

§= Filter

@’ € Coupler

| 3. Entanglement

2. Sending to

the server 0,1

S. Barz et al., Science 335, 303 (2012)



THE FUTURE IS QUANTUM
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