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Abstract

The peculiar properties of quantum mechanics enable possibilities not allowed by
classical physics. In particular, two parties can generate a random, secret key at
a distance, even though an eavesdropper can do anything permitted by the laws
of physics. Measuring the quantum properties of the signals generating the key,
would ultimately change them, and thus reveal the eavesdropper’s presence. This
exchange of a random, secret key is known as quantum cryptography.

Quantum cryptography can be, and has been proven unconditionally secure
using perfect devices. However, when quantum cryptography is implemented, one
must use components available with current technology. These are usually imper-
fect. Although the security of quantum cryptography has been proven for compo-
nents with certain imperfections, the question remains: can quantum cryptogra-
phy be implemented in a provable, unconditionally secure way, using components
available with current technology? This thesis contains both a theoretical, and
an experimental contribution to the answer of this question. On the experimen-
tal side, components used in, and complete quantum cryptography systems have
been carefully examined for security loopholes. In particular, it turned out that
two commercial quantum cryptography systems contained loopholes, which would
allow an eavesdropper to capture the full secret key, without exposing her pres-
ence. Furthermore, this detector control attack could be implemented with current
technology. The attack is applicable against a variety of quantum cryptography
implementations and protocols.

The theoretical contribution consists of security proofs for quantum cryptog-
raphy in a very general setting. Precisely, the security is proven with arbitrary
individual imperfections in the source and detectors. These proofs should make it
possible to use a wide array of imperfect devices in implementations of quantum
cryptography.

Finally, a secure detection scheme is proposed, immune to the detector control
attack and compatible with those security proofs. Therefore, if this scheme is
implemented correctly, it offers provable security.
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Publications contained in this thesis are referenced in bold (i.e. [57]) throughout
the text.
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Chapter 1

Introduction

The word cryptography originates from Greek and is composed by the words kryp-
tos which means hidden, and graphein which means writing. Placed together:
cryptography is the art of writing messages such that their content is hidden for
anyone but the intended receiver. The importance of cryptography cannot be suf-
ficiently emphasized. Without the cracking of the Enigma during the second world
war, the world history could have taken a very different turn. Without the inven-
tion of public key cryptography in the seventies, it would be unreasonably difficult
to communicate privately on the internet. Just imagine if all your non-face-to-
face communication such as phone calls, text-messages and internet activity were
openly available!

From the ancient Greece through the wars of the medieval times, the second
world war, and to today’s online banking, cryptography is the tool that more or
less permitted the public transport of important information. However, within
the field of cryptography, there has always been a constant battle between the
code makers who invent the cryptographic schemes, and those who break them.
Every time a new scheme has been proposed, there has been an extensive effort to
break it. Some try to break the schemes to identify security loopholes, in order to
improve security. Others try to break the schemes to eavesdrop the communication
with evil intentions.

Adding a new chapter to the constant battle between the makers and the break-
ers1, a new flavor emerged 20 years ago, sprouting from quantum physics. Previ-
ously, the security of cryptographic schemes has been based on trusted couriers or
mathematical complexity, while in quantum cryptography the security is rooted
in the laws of quantum mechanics. Even the very best code breakers cannot break
the laws of physics, so it seems that the code makers got the final word?

1For an entertaining introduction into the dramatic history of cryptography, I highly recom-
mend “The Code Book” by Simon Singh [1].
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Chapter 1. Introduction

1.1 The playing field of cryptography
Before entering the field of cryptography, and quantum cryptography in particular,
let us establish some terminology and game rules. The task of finding weaknesses
or breaking a cryptographic scheme is called cryptanalysis. The information which
is to be encrypted is usually called the plaintext, or just the message. The en-
crypted message is usually called the ciphertext. The goal of all cryptographic
schemes is that one party, commonly named Alice wants to send information to
the receiving party, commonly called Bob through some public channel. The goal
of the eavesdropper Eve, is to obtain the information through her access to the
public channel, in many cases preferably without alerting Alice and Bob.

Encryption and decryption involves the use of secret2 keys, which in a com-
puter context is just a string of ones and zeroes. In fact, an encryption device or
algorithm should only have the secret key and the message as inputs, and only
output the ciphertext. Likewise, the decryption device or algorithm should only
have the ciphertext and the secret key as inputs, and only output the message.
The security of the scheme should not rely on keeping details of the devices or al-
gorithms private. In fact, this is stated in Kerckhoffs’ principle for cryptographic
devices: a cryptosystem should be secure even if everything about the system,
except the key, is public knowledge. Security based on the secrecy of the devices is
often dubbed “security through obscurity,” and does not really offer any security3.
The eavesdropper could simply buy a copy of the system and examine it. Even
when the systems are not sold, the history has shown that the details of a scheme
eventually become known to the eavesdropper. As Claude Shannon phrased it:
“The enemy knows the system”.

1.2 Symmetric cryptography
One of the first known ciphers is Caesar’s cipher, used by Julius Caesar to com-
municate with his generals during his military campains. Caesar’s cipher is an
example of a mono-alphabetic substitution cipher: to encrypt the plaintext, each
letter is replaced with a letter a predetermined number of characters higher in
the alphabet. For instance, if the secret key is “f”, the letters of the plaintext is
replaced according to a→f, b→g, c→h and so forth. The ciphertext is decrypted
by replacing each letter with the letter the same number of characters lower in the
alphabet. The encryption is easily broken: the plaintext can be found by trying all
25 shifts in the alphabet, where only one shift will produce a meaningful message.

2Secret means unknown to any but Alice and Bob, and therefore Eve in particular.
3A simple example of security through obscurity is hiding the key to your front door under

the doormat. If the burglar knows the location of the key, the scheme is not secure any more.
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1.2. Symmetric cryptography

Still, Caesar’s cipher is a prime example of a symmetric ciphers.
In symmetric key cryptography, also called private key cryptography, Alice and

Bob agree on a secret, private, and preferably random keystring4. This key can
then be used to encrypt and decrypt messages in some cryptographic scheme (for
instance the secret key “f” using Caesar’s cipher in the above example).

The most important symmetric cipher is the one-time pad, invented by Gilbert
Vernam in 1917 [2]. On a character by character basis, the encryption and decryp-
tion works just as in Caesar’s cipher: each letter is shifted a number of characters
up and down the alphabet. However, in the one-time pad, the shift is changed
for each letter. For instance the code “fpt” would result in the word “the” being
encrypted as “zwx”. Now a brute-force attack would consist of trying each let-
ter in the alphabet on each of the three places. This would produce all possible
three letter words, hence Eve could just as well try to guess the plaintext. In fact,
the unconditional security (see Section 3.1) of the one-time pad was proved from
information-theoretic principles by Shannon in 1949 [3]. The result is simple to
derive, and is repeated in Section 3.1.

In the binary alphabet, the encryption and decryption algorithm of the one-
time pad is a bitwise exclusive or (XOR) operation5 on the message/cipher bits,
and equally many bits of secret key. Note that the key can not be reused, so the
one-time pad encryption consumes a number of secret bits equal to the number of
bits in the message. In fact, history has shown that reusing a key for the one-time
pad can be fatal: due to reuse of keys, Soviet spies were exposed, captured and
executed in the United States during the cold war6. As a matter of fact, not only
did Shannon prove the unconditional security of the one-time pad, but he also
proved that any unconditionally secure encryption scheme consumes at least as
many bits of secret key as the message. Therefore the symmetric ciphers suffer
from the key distribution problem: how much key is needed? And once Alice and
Bob cannot meet to “refill” their key, how do you distribute the secret key?

The key distribution problem has led to the development of less key-consuming
ciphers such as DES [4], RC4, and AES [5,6] which are widely used in computers
today. However, from Shannon’s proof we know that these ciphers do not offer
unconditional security: their security is merely based on the fact that they have
not been broken yet, and that it is believed that they are very difficult to break.

4If the keystring is not random, it reduces the time it takes to find the keystring by a brute-
force attack, since Eve can start with the most probable keystrings. An everyday example of
this is the dictionary attack, where the attacker assumes that the password/key is a word.

5The XOR operation is equal to adding modulo 2 bitwise. Another way of thinking about
the XOR operation when used to encrypt in the one-time pad, is that it inverts the message bit
if the secret key bit is 1 or leaves it untouched if the secret key bit is 0.

6Julius and Ethel Rosenberg were exposed by the VENONA eavesdropping project, and later
executed.
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Chapter 1. Introduction

1.3 Asymmetric cryptography

The other main class of non-quantum cryptographic schemes is called asymmetric
key, or public key cryptography, and does not suffer from the key-distribution
problem7. In asymmetric cryptography, Alice and Bob use different keys: one
for encryption and a different key for decryption. The first publication on public
key cryptography came in 1976 by Whitfield Diffie and Martin Hellman [7]. Two
years later came the now so widely used Rivest-Shamir-Adleman (RSA) algorithm
[8]. The principle is that Bob generates a key pair, consisting of an encryption
key, also called the public key, and a decryption key, also called the private key.
The encryption key is made available to Alice, for instance by making it publicly
available. Alice uses the public key to encrypt the message. Once the ciphertext
is received by Bob he uses his private key to decrypt the message.

Public key cryptography solves the key distribution problem, because the en-
cryption key can be made publicly available. In this scheme, the eavesdropper
obtains the encryption key and the ciphertext. Finding the decryption key based
on the the encryption key is a factorization problem which takes an exponential
amount of time8 using currently known algorithms on a classical (i.e. non-quantum)
computer. By selecting the key size, the average time required to find the private
key can be made arbitrarily large. However, there is a hitch: it is unknown whether
more efficient factorization algorithms exist. Therefore, the security of public key
cryptography is based on computational complexity and assumptions about the
non-existence of more efficient algorithms.

Unfortunately an algorithm which is polynomial in time exists for quantum
computers [9,10]. This makes public key cryptography insecure in the presence of
a scalable quantum computer9. Even without quantum computers, public cryp-
tography offers no forward secrecy: Eve could capture and store the public key
and the ciphertext until sufficient computational power to decrypt the message is
available.

So it seems that solving the key distribution problem comes at the cost of the
provable security?

7Of course Alice and Bob need to authenticate in any cryptographic scheme: This requires
Alice and Bob to know some (not necessarily secret) information about each other, like the hash
of each others public key.

8Exponential amount of time means that the factorization time consumed by a classical
computer scales exponentially with the size of argument.

9Currently, the number 15 has been factorized on a magnetic resonance quantum computer
[11]. Also recently, a Canadian company started offering quantum computers based on quantum
annealing [12]. Even though there have been discussions whether quantum annealing can be
used to implement general quantum algorithms [13], the company recently announced selling a
quantum computer to Lookheed Martin [14].
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1.4. Quantum cryptography

1.4 Quantum cryptography
This is where quantum cryptography comes to a rescue! The strange laws of
quantum mechanics allow Alice and Bob to generate a secret, random key at a
distance, therefore solving the key distribution problem! Afterwards, the key can
be used in an unconditionally secure symmetric encryption scheme, like the one-
time pad. I will here give a brief overview of the history of quantum cryptography;
for a more complete story, see for instance the reviews by Gisin [15] and Scarani
[16].

In 1984 Charles Bennett and Gilles Brassard suggested the use of elementary
particles to generate a secret random key at a distance [17]. The intuition comes
from the laws of quantum mechanics: in general, a measurement of a property
of a particle, can change the same property. This makes it impossible to copy a
quantum particle [18]. To exploit this for key distribution, Alice sends random bits
encoded in the properties of such elementary particles to Bob. These random bits
can later be used as a secret key. Any attempt at eavesdropping will we caught:
measuring the particles will change them, and reveal Eve’s presence to Alice and
Bob. If the particles were received undisturbed, the laws of quantum mechanics
guarantee that no one has knowledge of the bits in the key. Therefore, the security
of the key is not based on computational complexity, but rather on the laws of
physics.

The term quantum cryptography is somewhat inaccurate, since there is no
encryption involved. A more correct term is quantum key distribution (QKD),
which is the term I will use throughout this thesis10.

The protocol proposed in 1984 is now known as the BB84 protocol from the
names of its inventors. Alice sends a random bit in a random basis corresponding
to sending one out of four non-orthogonal quantum states to Bob. Bob performs
a measurement in a random basis. Afterwards they compare their bases, and if
they used the same bases Bob’s measurement result should correspond to Alice’s
random bit. If they used different bases the bits are discarded. Their remaining
random bits is a private secret key. To check for eavesdropping, they publicly
compare a fraction of their keys to check for errors. A full review of BB84 is given
in Section 2.1.

Independently, and without knowledge of Bennett and Brassard’s findings,
Arthur Ekert proposed to use entangled states to perform key distribution [19].
His intuition came from the fact that measuring each of the two particles in an
entangled state gives correlated measurement results, even if the two particles
are measured at a distance. These strong quantum correlations will necessarily

10Although some prefer to call it quantum key growing, since the authentication of Alice and
Bob requires a small initial key.
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Chapter 1. Introduction

violate the Bell inequalities [20]. Any measurement on an entangled state brings
“local reality” [21] to the properties of the particle such that further measurements
will not violate the Bell inequalities. Therefore, the violation of Bell inequalities
means that no eavesdropping has taken place. This makes it is possible to re-
veal any eavesdropper. In fact, one could even let the eavesdropper produce the
entangled states.

The protocol proposed by Ekert is named E91 or simply the Ekert protocol.
Here Alice and Bob each have one particle from an entangled state. Both Alice and
Bob measure their respective particles in one out of three different bases. Again,
the same basis choice gives perfectly correlated results, and these bits are the key.
The other bits where their bases differ, are used to check for the eavesdropper
by verifying the violation of a Bell inequality. Later Bennett, Brassaird and Mer-
main claimed that prepare-and-measure protocols such as BB84, and entanglement
based protocols such as the Ekert protocol are equivalent [16,22].

In 1992 Bennett showed that it is possible to perform QKD using only two
non-orthogonal states [23] in the so-called B92 protocol.

The first experimental demonstration of a QKD system was conducted by Ben-
nett et al. in 1992 [24]. This lab-bench experiment had a 32 cm free-space quantum
channel, with the quantum states encoded in the polarization of photons. After
this demonstration, the interest for QKD rapidly increased, as did the experimen-
tal activity. Soon QKD was demonstrated in an optical commercial telecomcable
over 23 km [25]. Currently, the distances has been increased to 250 km for an opti-
cal fibre [26], and 144 km in free space [27]. Today there exist several commercial
companies which supply QKD systems.

Theory also came a long way since 1984. An important discovery was privacy
amplification [28], which makes it possible to remove Eve’s partial knowledge about
the secret key by discarding some of the key during public discussion. Afterwards
the first security proofs were established [29–32], proving the unconditional security
of BB84 using perfect devices. In turn, people started considering the security
of QKD with models of real devices [33–35]. Unfortunately, the early security
analysis used an insufficient security definition (see Section 3.2). In 2005, a new
composable security definition was found [36, 37], and subsequently most of the
existing security proofs were updated or patched.

Even though QKD has been proven secure, it is a considerable challenge to
implement it. The presence of side channels was realized already during the first
experimental demonstration [24], when noise from the Pockels cells power supplies
revealed the secret key, making the system “secure against any eavesdropper who
happened to be deaf!” [38].

One imperfection which received considerable attention was the use of a coher-
ent source at Alice, which frequently sends more than one photon in each pulse.

6



1.5. Motivation for this work

This allows the photon-number-splitting attack [39, 40], where Eve blocks single
photons from Alice, and takes a photon for herself from the pulses containing
multiple photons. Although covered by security proofs [33,34][41], the impact on
the key rate and communication distance is devastating. Therefore, new protocols
emerged [42–45] to allow implementations with only a modest reduction in key
rate from an imperfect source.

A host of other security loopholes have also been identified [46–56][57][58,59] in
the implementations. From Eve’s point of view, the most successful class of attacks
is the detector control attacks [57,60]. Exploiting the detector response to bright
illumination, they allow Eve to capture the full secret key, without causing errors in
the key. Furthermore, the eavesdropping device is implementable with off-the-shelf
components. Detector control has been demonstrated in two commercial quantum
key distribution systems [57], and a full eavesdropper has been used to capture
the full secret key of an experimental QKD system at the National University of
Singapore [58]. The search for implementation loopholes is often referred to as
quantum hacking.

Even with very general security proofs [33][41], it seems to be challenging
to make implementations within the assumptions of the proofs. In parallel with
the success of quantum hacking, the idea of device independency was established.
In device-independent QKD (DI-QKD) [19, 61, 62] the number of assumptions on
the devices is reduced to a minimum. However, the remaining assumptions are
challenging to implement. In particular, the proofs depend on a loophole-free
Bell test, which requires a high detection probability at Bob. Otherwise, the
correlations seen at Alice and Bob can originate from a pre-programmed computer.
Although there are proposals to circumvent the detection loophole [63–65] at a
distance [66], it seems experimentally challenging and promises at best moderate
key rates. Therefore, it remains an open question if we will ever see DI-QKD
outside the laboratory [67].

1.5 Motivation for this work
When I entered this field in 2006, I got the impression that QKD was quite mature.
There were several startup companies producing QKD systems, and quite general
security proofs incorporated a wide array of imperfections. However, a loophole
not covered by the existing security proofs was found by our group. Therefore my
motivation was that, by weeding out some remaining loopholes, practical QKD
could deliver its provable, unconditional security. During my PhD, I have been
given the opportunity to test commercial QKD systems to see if they actually
comply with the assumptions in the security proofs. This is a very important task:
all mature security technologies, for instance RSA public-key cryptography [68],

7



Chapter 1. Introduction

did not become practically secure before the implementation had received massive
scrutiny from independent researchers, and loopholes were closed. Therefore, if
QKD is to mature, it is crucial that the security of the practical devices is tested
by independent researchers, in order to obtain a reasonable level of security.

8



Chapter 2

The principles of quantum key
distribution

There are numerous techniques in various quantum key distribution protocols,
but they all rely on the same fundamental principle from quantum mechanics:
in general, a measurement of a quantum state necessarily perturbs the quantum
state. In particular, the no-cloning theorem [18] shows that it is impossible to
copy a quantum bit (qubit). Therefore, by generating and measuring qubits in a
suitable way, any eavesdropper must necessarily change the states of the qubits by
measuring them, and therefore reveal her presence.

In this chapter, the first and most important protocol, the BB84 protocol is
presented. Several other protocols have been proposed and implemented, mainly
to increase practical performance, or to simplify the implementation. Some of
those protocols will be presented in subsequent chapters.

2.1 The BB84 protocol
The BB84 protocol is the QKD protocol which was first proposed [17], implemented
[24], and proved unconditionally secure [29, 31]. It has the advantage of being
intuitive and easy to understand, but it might not be the optimal protocol to
implement in practice.

QKD protocols require Alice and Bob to share a quantum channel, capable
of transporting qubits, and a classical channel, for instance the internet. Eve is
allowed to do anything allowed by physics with the qubits in the quantum channel.
The classical channel is authenticated1 by Alice and Bob. Therefore, while Eve

1Unconditionally secure authentication schemes exists. However, breaking the authentica-
tion after the secret key is generated does not compromise the security of the key. Therefore,
authentication schemes that guarantee the security for a limited amount of time are sufficient.

9



Chapter 2. The principles of quantum key distribution

can read all the information in the classical channel, she can not change this in-
formation. To authenticate the classical channel, previously generated secret key
is used2. Therefore QKD is often referred to as secret growing.

BB84 protocol:
1. Alice generates N random classical bits, and for each bit she randomly

chooses the Z = {|0〉, |1〉} or the X = {|−〉, |+〉} basis, where |+〉 =
1√
2(|0〉 + |1〉) and |−〉 = 1√

2(|0〉 − |1〉). For each bit, she generates a qubit
and sends it to Bob. If the bit value is 0, she sends |0〉 or |−〉, and if the bit
value is 1, she sends |1〉 or |+〉.

2. Bob measures the N qubits in a random basis; either the Z or the X basis.
Bob’s measurement result will be equal to Alice’s bit value if they used the
same basis. If they used opposite bases, Bob’s measurement result will be
random. This initial key is often called the raw key.

3. Alice and Bob publicly announce their basis choices over the classical chan-
nel, and discard the bits where they used different bases. With a high prob-
ability, they have about N/2 bits left, commonly called the sifted key.

4. Alice randomly selects a fraction of the remaining bits, and publicly an-
nounces the bit values. Bob compares Alice’s bit values with his measure-
ment results to check for Eve’s presence. From this set, they can estimate
the quantum bit error rate (QBER). If it is sufficiently low they continue the
protocol with the remaining m-bit key (how low is sufficiently low will be
discussed in Chapters 3 and 5). Otherwise, they discard the key and start
over again.

5. The last step is called reconciliation. Using the QBER estimate Alice sends
Bob error correcting data to obtain equal keys. The QBER enables Alice
and Bob to upper bound Eve’s information about the key. Then, Eve’s
information about the key is removed by discarding parts of the key. This
is called privacy amplification (see Section 2.3). In this step, the m-bit
erroneous, partly secure key is reduced to an n-bit flawless, unconditionally
secure key.

2For the first run, a pre-established (small) secret key is used for authentication. At first this
might appear as a drawback for QKD, but absolutely all (including all classical) cryptographic
schemes require authentication to avoid the man-in-the-middle attack. In this attack, Eve poses
as Alice to Bob, and as Bob to Alice, but in fact both Alice and Bob communicate only with
Eve. To avoid this attack, all protocols require some preshared information about the parties.
In QKD this is a random, secret key. In classical cryptography there exists schemes where the
preshared information is publicly available (i.e. the MD5 or SHA1 hash of a public key), but
these schemes are not unconditionally secure.
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2.2. Example of an attack

50%

50%

source

100%

0%Photon-

a) b) c)

Figure 2.1: The components used for a simple polarization encoded BB84 scheme.
a) A photon source is followed by a linear polarizer to generate a qubit with the
desired polarization, in this case a horizontally polarized photon. b) When a hor-
izontally polarized photon propagates through a horizontally oriented polarizing
beam splitter (PBS), it is deterministically found in the exit of the beam splitter
corresponding to the horizontal polarization. c) When a horizontally polarized
photon propagates through a +45◦ oriented PBS, the photon has 50% probability
to be found in each exit (but the photon will only be detected in one of them!).
Furthermore, if the photon is found in the ±45◦ exit of the PBS, the photon will
have a ±45◦ polarization afterwards. Therefore, the measurement has changed the
state of the photon.

During the reconciliation step Alice’s key was selected as the reference key,
and Alice sent information to Bob such that he could correct his key. The proce-
dure could have been done in the opposite direction, often referred to as reversed
reconciliation.

The protocol can be illustrated in a simple way by using the polarization of
photons as qubits. As we will see in Chapter 4, photons are used as qubits in
implementations. Figure 2.1 shows how to generate, encode and measure photons
as qubits. Figure 2.2 illustrates the BB84 protocol for a polarization encoded QKD
scheme.

2.2 Example of an attack
Let us briefly examine why a simple attack strategy fails. The most intuitive would
be for Eve to collect the qubit, copy it, and send one copy to Bob. After the basis
is revealed she could measure her copy in the same basis, and obtain the bit correct
value. But the no-cloning theorem [18] makes it impossible to copy the qubit, so
this strategy is physically impossible.

Let us see what happens if Eve tries to measure the qubits sent by Alice. Since
she does not know the basis used by Alice and Bob3, she randomly uses the Z or X
basis. For half the bits she will guess the correct basis, and then she measures the

3For BB84, Alice and Bob discard the bits where they used different bases, so it is only
necessary to consider the case where Alice and Bob used the same basis.
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Secret key
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Bob’s basis

Bob’s measurement
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Secret key
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Figure 2.2: The BB84 protocol illustrated with photons. Here, the horizontal/ver-
tical (H/V) basis corresponds to the Z basis and the ±45◦ basis corresponds to
the X basis.

correct bit value. These qubits are unaffected by Eve’s measurement, and Bob’s
measurement results will correspond to Alice bit values. No QBER is introduced.
For the other half of the bits, Eve will use the opposite from Alice’s and Bob’s
basis. For these bits, the probability to measure the same bit value as Alice is
50%. The qubit is passed on to Bob in the wrong basis, so regardless of Eve’s
measurement result, Bob will have a 50% probability of measuring the opposite
of Alice’s bit value. In other words, Eve’s attack will introduce 50% QBER for
half of the bits, a total of 25% QBER. Figure 2.3 illustrates this attack for the
polarization encoded scheme presented in Figure 2.2.

This type of attack is called an intercept-resend attack because Eve fully mea-
sures the qubits from Alice. For such attacks, Eve always has more information
about Alice’s bits than Bob has. Therefore, obviously the QBER accepted by Alice
and Bob must be lower than 25%. The acceptable QBER depends on the assump-
tions about Alice’s and Bob’s devices, and will be discussed in detail in Chapters 3
and 5. Note that Eve could achieve an arbitrarily low QBER by attacking just a
fraction of the qubits. Therefore, a non-zero QBER means that Eve might have
some information about the key.
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2.3. Privacy amplification

H/V basis

H/V basis

source

0

0

1

1

0 1 0 00 1 0 1 1 1 0

0 0 001 1 0 0 10

1

”1”

”0”

±45◦ basis

±45◦ basis

0

Alice

Bob

Alice’ bit
Alice’ basis

001

Same basis?

Same bit value? Same bit value?

Same basis?

Bob’s measurement

Bob’s basis

Photon-

No Yes

Yes

YesNo No No Yes No Yes No No Yes Yes

YesNo

Figure 2.3: Eve’s attempt at a simple intercept-resend attack. She always uses
the same H/V basis (Z basis) to measure the photons, since this is equally likely
to be the correct basis choice as any other choice. For the bits where Eve’s basis
choice is different from the one of Alice and Bob, she will introduce errors in the
key. Therefore, when Alice and Bob estimate the QBER (using a fraction of the
key, in this case 3 bits) her presence is revealed.

2.3 Privacy amplification
Let’s assume that after error correction, Alice and Bob have a flawless, private key
where parts of the key is known to Eve. It turns out that it is possible for Alice
and Bob to sacrifice parts of the key to obtain a smaller key on which Eve has no
information. The procedure is called privacy amplification [28].

An intuitive algorithm goes as follows: Alice announces that two of the bits are
to be replaced with a single bit. The bit value of this bit is the XOR of the two
bit values. If Eve knew each bit value independently with 75% probability, she
knows the correct XOR value with probability 0.752 + 0.252 = 0.625. Thus Eve’s
information about this bit is less than her information about each of the previous
bits.

In practice, a different algorithm is used. The only privacy amplification
algorithm that preserves composability (see Section 3.2) is two-universal hash-
ing. A hash function maps all 2n n-bit inputs to all 2m m-bit outputs. Since
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Chapter 2. The principles of quantum key distribution

m < n there exists a probability that two different inputs produce the same out-
put. The family of two-universal hash functions F has the property that for all
f ∈ F , and all x, x′ ∈ (Z2)n, the probability of a collision is upper-bounded as
p(f(x) = f(x′)) ≤ 1/2m. Therefore, Alice and Bob randomly choose a function
f ∈ F , and obtain the secret key s = f(x), where x is the key after error correc-
tion. If Eve has a slightly different key x′, the probability that she obtains the
same key f(x′) is equal or less than 1/2m, so any guess is equally probable to be
the key as f(x′).
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Chapter 3

Theoretical security

So far the security of QKD has been based on the fact that Eve cannot measure
the qubits without introducing errors in the key. However, quantum physics allows
more powerful interactions than a projective measurement! Normally, Eve’s attack
is classified as follows [69]:

• In individual attacks (also called incoherent attacks) Eve treats every quan-
tum system from Alice equally. One example of an individual attack is the
intercept-resend attack considered in Section 2.2. A more general attack is
to let each quantum system from Alice interact with an individual probe1,
and measure the probe later. In different definitions of individual attacks,
it varies whether the measurement of the probe must happen before or after
sifting [16]. Note that for the BB84 protocol, the best individual attack has
been found [70].

• A stronger class of attacks is collective attacks. As for the individual attacks,
Eve may let the each system from Alice interact with a probe. After the
interactions, Eve has a number of probes. In this class of attacks Eve can
wait arbitrarily long, for instance until the key is used in some application
like the one-time pad. Then she can do a collective measurement on all the
probes simultaneously.

• The most powerful class of attacks is called coherent attacks, or general at-
tacks. Here Eve can have any interaction with the system from Alice and
perform any measurement at any time. She could for instance entangle mul-
tiple bits, and/or use the same probe for many bits.

1A probe is a quantum system in a well-defined state, typically a number of quantum bits
each prepared in the state |0〉.
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The exponential de Finetti theorem [71,72] proves that in the asymptotic limit
of infinite keys, and if Bob’s signals have a sufficiently low dimension, any coher-
ent attack is not better than the best collective attack. Therefore, under such
circumstances, it suffices to prove the security against collective attacks. However,
the prerequisites are not always fulfilled for devices with imperfections. To apply
the de Finetti theorem, the (entanglement based) protocol must be invariant to a
permutation of Alice’s and Bob’s N particle pairs after they have been distributed.
This is clearly not the case for collective errors, for instance in the case of after-
pulses (see Section 4.1.3). In general, the dimension of Bob’s signals will be of
infinite dimension, and therefore the de Finetti theorem does not apply. In some
cases, this can be solved by proving the existence of a squash operator [73–76],
such that one can assume that Eve only sends single qubits to Bob. However,
in the presence of certain imperfections, for instance detector efficiency mismatch
(see Section 5.5), no squash operator has been found2.

3.1 Provable security

Provable secure means that the security is proven without restricting the eaves-
dropper in computational power, time or physical access to the communication
channel. The only requirement is that the attacker obeys the laws of physics, and
that the protocol is correctly implemented3.

Since it is straightforward, let us prove that the one-time pad (see Section 1.2)
is unconditionally secure. Assume a n-bit message M ∈ (Z2)n where P (M = m)
follows some probability distribution. Furthermore, assume a random, secret key
K ∈ (Z2)n where all keys are equally probable: P (K = k) = 1/2n. Let the
ciphertext be denoted by c ∈ (Z2)n. Since all possible keys k map m into all
possible ciphers c in (Z2)n, the conditional probability on the cipher c given the
message m is equal to P (C = c|M = m) = 1/2n. In turn the probability of a
specific ciphertext c for any message m is found as

P (C = c) =
∑
m

P (C = c|M = m)P (M = m) =
∑
m

P (M = m) 1
2n = 1

2n . (3.1)

2Squash operators have been found for BB84 for specific measurement setups for Bob: when
Bob’s detectors are identical and his basis selector is simply a Hadamard transform on each
photon of the received pulse [74,77], or if Bob’s measurement operators are symmetric under the
cyclic group C4 [76].

3As a trivial example: Alice or Bob should not reveal the secret key, nor the secret message to
Eve. Although trivial, in practice this kind of information leakage is a highly relevant problem.
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Then, Bayes’ theorem gives

P (M = m|C = c) = P (C = c|M = m)P (M = m)
P (C = c) = 1/2nP (M = m)

1/2n
= P (M = m),

(3.2)

which means that the probability of a given messagem is the same if the ciphertext
is known. In other words: the ciphertext reveals nothing about the plaintext.

3.2 Security definition for QKD
One would like to prove that a QKD protocol gives a random, secret key to Alice
and Bob, while zero information about the key is given to Eve. This means that
the best attempt Eve could do to find the key is to try to guess. Unfortunately, Eve
could always attack a few bits, and the privacy amplification could fail, leaving Eve
with a tiny information about the key. In practice, the security is defined such that
the information left to the eavesdropper is quantified, and can be made arbitrarily
small. The first security definition was the following: “A QKD protocol is ε-secure
if, for any security parameters ε > 0 and s > 0 chosen by Alice and Bob, and for any
eavesdropping strategy, either the scheme aborts, or it succeeds with probability at
least 1−O(2−s), and guarantees that Eve’s mutual information with the final key
is less than ε. The key must also be exponentially close to uniformly distributed
[78, 79].” The security definition is very intuitive: the protocol should normally
succeed, and Eve’s mutual information with the key can be made arbitrarily small.
Under this security definition the achievable secret key rate R is given by [80]

R ≥ I(A,B)−min {I(A,E), I(B,E)} , (3.3)

where I( · , · ) denotes the mutual information [81] two parties (A stands for Alice,
B for Bob, and E for Eve).

This definition is insufficient because it considers the information after the par-
ties (including Eve) have measured their quantum systems. Quantum mechanics
is often counterintuitive, and it turns out that if Eve is given one extra bit of
information before she measures her probe, this could unlock more than one bit
of information [82]. This extra information could easily come from some known-
plaintext attack4. This security criterion also lacks composability. If an ε-secure
task5 uses an ε′-secure key, what is the security parameter of the composite pro-
cess?

4In a known-plaintext attack, the eavesdropper knows a part of the encrypted plaintext. For
instance, the header of an e-mail is very similar for all e-mails. Then, the one-time pad encrypted
header reveals parts of the secret key.

5The one-time pad is a 0-secure task.
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A suitable security definition was found in 2005 [37]. The success criterion
corresponds to the original one, but Eve’s knowledge about the key is not based
on measurement data any more. Let ρABE be the general quantum state of Alice,
Bob and Eve. Further let ρS = 1/|S|∑S |s〉〈s| ⊗ |s〉〈s| be a classical quantum
extension of the final secret key bits s. Then, the key is ε-secure if

1
2‖ρABE − ρS ⊗ ρE‖1 ≤ ε, (3.4)

where 1
2‖ρ− σ‖1 = 1

2tr|ρ− σ| is the trace distance between the quantum states ρ
and σ, with |A| =

√
A†A. The trace distance has the property that no physical

process can increase the trace distance between two quantum states [83]. There-
fore, there is no operation that will increase Eve’s entanglement with the key, and
thus knowledge about the key after a measurement of her quantum system.

For this security definition, ε is the distinguishability advantage: the probability
that Eve can use her information to distinguish the QKD system from a perfect
QKD system is less than ε.

This security definition is composable [84], so if an ε-secure key is used for an
ε′-secure task, the composed task is (ε+ ε′)-secure. Due to the late arrival of this
suitable security definition, many of the security proofs and security frameworks
are formulated for the obsolete security definition. Luckily, patches have been
found for most security proofs and frameworks, making them valid also with the
new definition. Note that the expression for the secret key rate, Equation (3.3)
remains valid for security proofs restricted to individual attacks.

3.3 Koashi’s framework for proving security
It is often complicated to prove the security of QKD-protocols directly. Therefore,
the security proofs are usually constructed as follows: first the security is proved
for an abstract, virtual protocol. Then, the actual protocol is shown to be a special
case of the virtual protocol.

The security of QKD has been proven using several different frameworks [29–
32,85,86]. For QKD with imperfections, most proofs use a virtual protocol based
on entanglement. The contributions in this thesis use the framework from Koashi
[85, 87]. The idea and principle behind this framework is sketched below. Note
that this sketch is not complaint with the new security definition. Luckily, it has
been proved that the results are also valid with the new security definition [88]
(see Section 3.2). Nevertheless, the information-theoretic approach is sketched
here because it is more intuitive and easier to understand than the trace-distance
based approach.
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Koashi’s security proof is based on the uncertainty principle. Assume that N
qubits are measured in either the X or the Z basis, and let XN and ZN be the
stochastic variables corresponding to the measurement result in each basis. The
entropic uncertainty relation [89] can then be formulated as:

H (XN) +H (ZN) = N, (3.5)

where H( · ) denotes the entropy of the measurement result in a basis. The idea
is to use the entropic uncertainty relation (3.5) to upper bound Eve’s information
about the key6.

In this protocol, Alice and Bob share N bipartite states (for instance EPR-
pairs). The protocol is symmetric with respect to the basis choices, so without
lack of generality, assume that Alice and Bob use the Z basis7 to generate the key,
and in particular, let Alice’s measurement result be the raw key.

The amount of privacy amplification required can be found from the following
virtual experiment: assume that Alice measures the raw key in the X basis instead
of the Z basis. Bob’s task is to predict the result of Alice’s virtual X basis
measurement. Since Bob does not actually do this prediction, Bob can do anything
permitted by the laws of nature, including a virtual measurement on his parts of
the bipartite states. If the uncertainty about Alice’s virtual X basis measurement
H(A) can be bounded from Bob’s virtual measurement result B = b, H(A|B =
b) ≤ K, then the entropic uncertainty relation (3.5) predicts that no one, including
Eve can predict the outcome of Alice’s Z basis measurement with uncertainty less
than H(ZN) ≥ N −K. Since these N −K bits are unknown to Eve, they can be
used to generate a secret key. However, Bob must ensure that he has an identical
raw key as Alice. Let δbit be the error rate in the Z basis, and let h( · ) denote the
binary entropy function. Then Alice can use Nh(δbit)-bits of pre-established secret
key to securely send Bob error correcting data such that they obtain identical raw
keys. The net secret key rate is therefore

R ≥ N (1− h (δbit))−K. (3.6)

For perfect devices, Bob can for instance try to predict Alice’s virtual X basis
measurement by measuring his parts of the bipartite states in the X basis. Then,
if δphase is the error rate in the X basis, the number of bits where his and Alice’s
measurement results differ should be Nδphase, and his uncertainty about Alice’s

6Recently a quantum version of the uncertainty relations has been found [90, 91], relating
the uncertainty not only to the measurement outcome of Eve, but also to the quantum states
possessed by Eve.

7Since protocol is symmetric with respect to the basis choice, one can simply label Alice’s
and Bob’s basis choice as the Z basis, and the opposite basis as the X basis.
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virtual X basis measurement is given by K ≥ Nh(δphase). Therefore, the net key
rate for perfect devices is given by

R ≥ 1− h(δbit)− h(δphase). (3.7)

If the QBER in the bases are equal (δ = δphase = δbit), the rate becomes

R ≥ 1− 2h(δ). (3.8)

R > 0 requires δ < 0.11 = 11%. This is a bound for the QBER in the absence of
imperfections.
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Chapter 4

Implementations of QKD

The most important ingredient when implementing QKD is suitable quantum bits.
They should be easy to generate, easy to transport while preserving their quantum
state, and easy to measure. In practice the photon is the particle that best suits
these requirements. In this chapter, we discuss the main components in a QKD
setup, and discuss some architectures for QKD systems. Finally, QKD networks
are discussed. Note that continuous-variable QKD [92, 93] is not presented here,
since it is unrelated to the work presented in this thesis.

4.1 Components for QKD

4.1.1 Qubit source
In most setups, lasers are used as a qubit source because they are practical, small
and low-cost. However, a laser is not a single photon source: it emits approximately
coherent states. Without a phase reference, the output state from a laser can be
expressed as a Poissonian mixture of the different number states:

ρ =
∞∑
n=0

e−µµn

n! |n〉〈n|, (4.1)

where µ is the mean number of photons in the pulse.
Since Alice frequently sends more than one photon, this imperfection has led

to the development of more sophisticated protocols to battle the photon-number
splitting attack (see Section 5.2).

There are sources which send out multiphoton pulses less frequently than a
laser, so-called sub-Poissonian sources. The development of these sources for
quantum cryptography has slowed down, due to the development of the decoy
state protocol [43–45], which negates the loss of key due to multiphoton pulses.
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However, the sub-Poissonian sources might find a new application in quantum
repeaters [94].

A third class of sources is entangled photon sources, for instance used in the
Ekert and the BBM QKD protocols [19,22], and an essential ingredient in photon-
based quantum computing [10]. Entangled photon sources have developed rapidly
in the recent years. Traditionally, entangled photons have been generated through
parametric down-conversion, requiring a powerful pump laser. However, now it
seems that entangled light emitting diodes are within reach [95,96].

In prepare and measure schemes, Alice’s basis and bit choice is usually encoded
in the polarization or phase of the photon. In a polarization encoded scheme, the
encoder is simply a polarizer, while in a phase encoded scheme, the encoder is
usually an interferometer (see Sections 4.2.1–4.2.2).

4.1.2 Quantum channel
The requirements for the quantum channel are that it should preserve the quantum
state (avoid decoherence from the environment), and have low loss. In practice,
two channels have the desirable properties: optical fiber and free-space.

Optical fiber technology is mature: optical fibers have been developed and
used in telecommunication for four decades. The loss α of an optical fiber is
usually measured in dB/km. The probability for a single photon to be transmitted
through an optical fiber of length l, is given by 10−(αl)/10. The loss depends heavily
on the wavelength of the photons, and is minimal in the two “telecom windows”:
α ' 0.34 dB/km for 1330 nm, and α ' 0.2 dB/km for 1550 nm. Since loss is critical
for the transmission range and key rate, the 1550 nm wavelength is usually used
for QKD.

Due to birefringent effects, optical fibers have significant depolarization. There-
fore, phase-encoding is usually used for fiber-based QKD systems.

Free-space links have negligible decoherence. However, atmospheric fluctua-
tions make it challenging to predict the arrival point of a photon over large dis-
tances. Another disadvantage of the free-space link is that it requires a line-of-sight
between Alice and Bob.

There are “atmospheric transmission windows” that have small loss, for in-
stance 780–850 nm and 1520–1600 nm typically have loss α < 0.1 dB/km in clear
weather [97].

4.1.3 Detector
There are excellent reviews of single photon detectors [98,99], so this section only
contains a brief review of the detector technologies relevant to this thesis: avalanche
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photodiodes (APDs) [100], and superconducting nanowire single photon detectors
(SNSPDs) [101,102].

The detector performance has four important figures: detection efficiency, dark
count rate (false detection events), detector dead time (or maximum detection rate)
and timing jitter.

With a few notable exceptions [103–105], both APD based and SNSPD based
single photon detectors are threshold detectors. Then, the detector output is
binary and distinguishes between “zero” or “one or more photons”.

Avalanche photodiodes

In an APD, an absorbed photon creates an electron-hole pair. If an electric field
is present, the electron and the hole will propagate in opposite directions, and
in the case of a sufficiently large electric field, the particles can generate energies
larger than the ionization energy of semiconductor. Then, a collision with the
lattice causes more electron-hole pairs, and in total an avalanche of charge carriers.
Therefore, by applying a sufficiently large bias voltage VAPD across the APD, the
absorption of a single photon is amplified to a large macroscopic current.

When the APD is (reversely) biased above the breakdown voltage Vbr in the
Geiger mode, the current caused by an avalanche is self-sustained. To reset the
APD, the voltage of the APD is reduced below the breakdown voltage, such that
the avalanche stops. This is called quenching [106]. It can be done passively, where
the current trough the APD lowers the voltage, or actively, where an external
circuit forces the voltage down after an avalanche. Gating the APDs can be seen
as a special case of active quenching, where the voltage is reduced periodically
regardless of the presence of an avalanche. Figure 4.1 shows the bias operation of
the APD.

For light in the 400–1000 nm range, silicon APDs can be used [100]. They
typically have a detection efficiency of around 50%, and a dark count rate of about
100 Hz. Furthermore, their dead time allows count rates up to at least 10 MHz.
Typical jitter is 350 ps FWHM for thick APDs optimized for longer wavelengths,
50 ps FWHM for thinner ones with peak sensitivity around 500 nm [100].

With fiber-based QKD, the 1550 nm wavelength is the most interesting due to
the low loss at this wavelength. While it is possible to use silicon APDs combined
with up-conversion [107], InGaAs/InP heterostructure APDs are usually used at
this wavelength. The drawback of these composite semiconductor devices is that
they have more impurities, resulting in higher dark count rates. Therefore, they
are only biased to the Geiger mode when a photon is expected, in so-called gates
(see Figure 4.2).

The temperature is an important parameter for the APD. At a lower tempera-
ture, the dark count probability is reduced. However, during an avalanche carriers
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Figure 4.1: The operating principles of an APD. First the APD is biased at a point
(A) above the breakdown voltage Vbr. When a single photon arrives, it causes an
electron-hole pair which amplifies to a macroscopic current (B). A photon arrival
is signaled when the current exceeds the comparator threshold Ith. Afterwards,
the current is stopped through quenching (C), before the voltage is brought back
above the breakdown voltage again. For a bias below the breakdown voltage, the
current through the APD depends linearly on the optical power incident on the
APD.
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Figure 4.2: Gating an APD to reduce dark counts. When the APD is gated, the
voltage at the APD is only above the breakdown voltage at times when a photon
is expected.

are trapped in impurities in the semiconductor. If a gate is applied a short time
after an avalanche, there is a high dark count probability due to decay of trapped
carries. This is called an afterpulse. At a lower temperature, it takes a longer time
for the trapped carries to decay, and therefore low temperature effectively reduces
the gate repetition rate. There is an intermediate solution: the gates are applied
at a high repetition rate, but a number of gates is removed after a detection event,
so-called afterpulse blocking [108]. For example, Clavis2 QKD system by manufac-
turer ID Quantique uses a pair of InGaAs/InP APDs. They are cooled to −50 ◦C,
and about 3 ns long gates are applied at a frequency of 5 MHz. Their quantum

24



4.1. Components for QKD

Figure 4.3: Single photon detection using a superconducting nanowire. (a) A
photon is absorbed in the superconducting nanowire, and causes a normally con-
ducting hot-spot. (b) The bias current circumvents the hot-spot, increasing the
current density outside the hot-spot. (c) The current density on each side of the
hot-spot exceeds the critical current density, and a larger piece of the cross-section
is now normally conductive. (d) The normally resistive region covers a whole
cross-section of the nanowire, which now has a non-zero resistance. Reprinted
from Reference [113], c©2003 IEEE.

efficiency is about 10%. After a detection event, 50 gates are removed from both
APDs, corresponding to a deadtime of 10µs, effectively limiting the count rate to
less than 100 kHz. The timing jitter for these detectors is about 500 ps FWHM,
although the system only registers timing as the gate number.

Faster APD based detectors have been developed using rapid gating techniques
[109–112]. These detectors use very short gates, and bias the APD only slightly
above the breakdown voltage in the gate. Therefore, the current in the avalanche,
and thus afterpulses are significantly reduced. They also use more sophisticated
comparator techniques, some of which give photon-number resolving capabilities
[103].

Superconducting nanowire single photon detectors

A SNSPD [101, 102] consists of a superconducting nanowire, typically shaped to
fill a square in order to achieve good coupling between the optical fiber and the
nanowire. During operation, the nanowire must be cooled to the superconducting
state, typically at a temperature of about 4 K. Then, it is biased with a current Ib
slightly lower than the critical current Ic where nanowire goes normally conductive.
Note that since the nanowire is superconducting, there is no voltage drop across
it. When a photon is absorbed by the nanowire, it causes a normally conductive
hot-spot (see Figure 4.3). This reduces the superconducting cross-section of the
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nanowire, such that the current density in the rest of the cross-section increases,
and exceeds the critical current density. Then, the whole cross-section goes nor-
mally resistive, which makes the voltage over the nanowire increase. Afterwards,
the current drops, the nanowire cools back to the superconducting state, and the
current rises to the original value making the detector ready for the next photon.

The longest-distance experiments [26, 114–116] use SNSPDs, due to their low
dark count rates (< 1 Hz) and low timing jitter (< 60 ps FWHM). The deadtime is
typically 10 ns, and the quantum efficiency is typically in the order of 1%. However,
using an integrated optical cavity, a quantum efficiency of 57% has been reported
[117].

4.2 System architectures

4.2.1 Polarization encoding
Polarization encoding was used in the first experimental QKD system [24]. Alice
used a laser and two Pockels cells to generate the four different states in the BB84
protocol. The quantum channel was 32 cm free space. Bob’s receiver consisted of
a Pockels cell to select the basis, followed by a polarizing beam splitter and two
photomultiplier tubes. There is one important remark about this implementation:
Alice’s and Bob’s bit and basis choice must be applied to the Pockels cells. This is
called active basis choice: true random numbers must be input to the apparatuses.

Generating a sufficient amount of random numbers is challenging. True quan-
tum random number generators1 still have a bit rate less than 100Mbit/s [120,
121]2. Therefore, passive basis choice implementations were invented [124], with
one example in Figure 4.4. In a passive basis choice BB84 implementation, a beam
splitter is used to randomly choose the basis: the single photon can only take one
of the exits of the beam splitter. Since one of the exits contains the X basis
measurement, and the other contains the Z basis measurement, this results in a
random basis choice. In passive basis choice implementations, Bob cannot verify
that the basis choice was random. Therefore, passive basis choice offers a lower
level of security than active basis choice. I will use the term passive not only for
BB84, but for all implementations where Bob does not input any randomness into
his measurement device.

1There are quantum random number schemes, which are faster, but contain a mixture of
quantum and chaotic randomness [118,119].

2An natural question is: how can one verify that a sequence of numbers is truly random? The
answer is that this is impossible for a finite sequence of numbers, because this sequence could
always repeat itself [122]. Interestingly, quantum physics offers not only a technique to generate
random numbers (single photon source followed by a 50/50 beam splitter and two detectors),
but also, a way to verify that the numbers are truly random [122,123].
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Figure 4.4: A polarization encoded implementation with passive basis choice. Al-
ice randomly fires one of the four laser diodes before reducing the energy of the
pulse to the single photon level. Bob must use waveplates in order to revert the
transformation by the quantum channel. A beam splitter (BS) is used to ran-
domly select the basis at Bob’s side. LD: laser diode; ND: neutral density filter
(attenuator); PBS: polarizing beam splitter; λ/2: half-wave plate; APD: avalanche
photodiode.

After the initial demonstration [24], distances increased to 1 km [125], and later
to 23 km in an existing fiber under lake Geneva [25]. The experiments revealed
that the depolarization in the fiber is a challenge. In contrast, free-space has
negligible impact on the polarization. Therefore, polarization encoding has been
used in several free-space experiments [27,126–128].

4.2.2 Phase encoding
It was quickly realized [23, 129] that in optical fibers, the phase of the photon is
stable, and therefore suitable for encoding the qubit state. Figure 4.5 shows an
example of a phase encoded implementation, consisting of a large Mach-Zehnder
interferometer where Alice and Bob controls the phase shift in each arm. Alice
selects the bit and basis by applying one out of four random phase shifts ϕA ∈
{0,π/2,π,3π/2} to her phase modulator. The quantum channel consists of two
optical fibers between Alice and Bob. Bob randomly selects one out of two phase
shifts ϕB ∈ {0, π/2} to select between the two bases. If the phase difference
ϕA − ϕB is equal to 0 or π, the photon will be detected deterministically at a
single output from Bob’s fiber coupler. If ϕA − ϕB is equal to π/2 or 3π/2, the
photon will be detected at a random output. This is summarized in Table 4.1.
From the table, it is easy to realize that a phase encoded system is topologically
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Figure 4.5: A phase encoded implementation using active basis choice. Alice ran-
domly chooses a phase shift ϕA ∈ {0,π/2,π,3π/2} to encode one of the four states.
Bob randomly chooses a phase shift ϕB ∈ {0,π/2} to select his measurement basis.
This setup is topologically equal to the polarization encoded system in Figure 4.4.
LD: laser diode; C: fiber-optic coupler; PMA: Alice’s phase modulator; PMB:
Bob’s phase modulator; APD: avalanche photodiode.

Alice bit Alice basis ϕA Bob basis ϕB ϕA − ϕB Bob measurement
0 Z 0 Z 0 0 0
0 Z 0 X π/2 −π/2 ?
0 X π/2 Z 0 π/2 ?
0 X π/2 X π/2 0 0
1 Z π Z 0 π 1
1 Z π X π/2 π/2 ?
1 X 3π/2 Z 0 3π/2 ?
1 X 3π/2 X π/2 π 1

Table 4.1: The relation between Alice’s and Bob’s bit and basis choices, Bob’s
measurement result and the settings of the phase modulators in an interferometric
implementation.
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Figure 4.6: An active basis choice phase encoded implementation, using two
asymmetric Mach-Zehnder interferometers. Alice randomly chooses a phase shift
ϕA ∈ {0,π/2,π,3π/2} to encode one of four states. Bob randomly chooses a phase
shift ϕB ∈ {0,π/2} to select measurement basis. LD: laser diode; C: fiber-optic
coupler; PMA: Alice’s phase modulator; PMB: Bob’s phase modulator; APD:
avalanche photodiode.

equal to a polarization encoded system.
The implementation as shown in Figure 4.5 is impractical. Optical fibers are

expensive, so two fibers would double the bill. More importantly, it would be a
tremendous challenge to keep such a long interferometer stable. There is however
a way to transport the modes of both fibers through a single fiber by using an
asymmetric interferometer to time-multiplex them into two pulses. Then the two
pulses are split in another asymmetric interferometer at Bob. Figure 4.6 shows an
implementation using two Mach-Zehnder interferometers, but note that there are
also implementations based on Faraday-Michelson interferometers [130].

Despite this configuration being tremendously more stable than the one in
Figure 4.5, still the main challenge of the double interferometer architecture is to
keep the interferometers balanced: after alignment they usually only stay balanced
for minutes [131]. Therefore, tracking methods have been developed [108, 132].
This double interferometer architecture has been used in numerous experiments,
including an experimental QKD system producing over 1Mbit/s secret key rate
over 50 km [133].

4.2.3 Plug-and-play architecture
As mentioned, the main challenge in an interferometric implementation is phase
drift in the interferometers. However, there is a beautiful solution to the problem.
In plug-and-play systems (see Figure 4.7), the pulses are first passing through
Bob’s interferometer as bright pulses, and are sent from Bob to Alice. Alice uses
her phase modulator to encode the bit and basis choice, and uses a Faraday mirror
[134] to send the pulses back to Bob. The pulses are attenuated to single photon
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Figure 4.7: A plug-and-play QKD system. The laser in Bob sends a train of pulses
through his interferometer without activating his phase modulator (PMB). The
pulses travel to Alice, where a classical detector (D) is used to synchronize Alice’s
phase modulator (PMA) to one of the two pulses from Bob’s interferometer. An
optical delay line (DL) is used to store the whole train of pulses to avoid Raileigh
backscattering hitting Bob’s detectors. Upon return, the pulses travel through
the opposite arms of the interferometer thereby automatically compensating drift
in the interferometer. FM: Faraday mirror; C: fiber-optic coupler; ND: neutral
density filter (attenuator); PBS: polarizing beam splitter; APD: avalanche photo-
diode.

level at the exit of Alice’s system. Using this design, the birefringence (i.e. po-
larization transformation) of the fiber is reverted when the photon travels back to
Bob. Furthermore, the polarization is exploited to make the photon travel the op-
posite arm in Bob’s interferometer when it returns. Given that the interferometer
is stable for the round trip time of the photon, phase drift in the interferometer is
automatically compensated. Therefore, this is called the plug-and-play architec-
ture: it works on any uncharacterized3, previously deployed fiber. Since the pulses
are sent from Bob to Alice and back to Bob again, this is also often referred to as
a send-return system. Although this allows Eve to tamper with the signals before
they enter Alice’s system, including this in the model of Alice shows that it barely
reduces the key rate [135].

There have been many QKD experiments using the plug-and-play systems [136–
138]. In fact it is the architecture used in several commercial systems, such as the
QKD systems from ID Quantique (see Figure 4.8) and the QPN 5505 by MagiQ
Technologies. In the SwissQuantum QKD network (see Figure 4.9), three links
from ID Quantique ran autonomously from April 2009 to January 2011, thus the
plug-and-play architecture seems to be very stable.

3The loss of the fiber must be upper bounded to calculate the secure key rate, but this should
be possible with the knowledge of the length and type of fiber.
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Figure 4.8: Clavis2, a research QKD system by commercial vendor ID Quantique.
This system is an implementation of the plug-and-play architecture presented in
Figure 4.7. Alice is at the left while Bob is at the right. Printed with permission
from ID Quantique. Photo c©2008 Vadim Makarov.
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Figure 4.9: The node located at the University of Geneva (UNIGE) in the Swis-
sQuantum network. The bottom of the rack contains two commercial Vectis QKD
systems by ID Quantique, each connected to different nodes through pairs of fibers
(one dark fiber for faint pulses and synchronization data, classical post-processing
and encrypted data on another). The node also contains a key management server,
and several different classical encryptors which use the secret key generated by the
QKD systems. Photo by c©2010 Vadim Makarov.
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Figure 4.10: An implementation of the DPS protocol. Alice consists of a laser
source (LD), followed by a phase modulator (PMϕ). The bit values of the key
are encoded into the phase difference between two consecutive pulses: 0 (π) phase
difference corresponds to the bit value 0 (1). Bob consists of an asymmetric inter-
ferometer, with the length difference of the two arms corresponding to the length
difference between two pulses sent by Alice. The figure shows an example of bit
values coded into the pulse train. Note that the phase shifts must be read from
right to left according to the pulse’s arrival to Bob. ND: neutral density filter
(attenuator); D0/1: single photon detector for the bit value 0/1.

4.2.4 Distributed-phase-reference protocols
While some protocols have been motivated by increased security in practical im-
plementations, others have been motivated by a simpler implementation. This
is the case for the distributed-phase-reference protocols such as the differential
phase shift (DPS) protocol [139, 140] and the coherent one way protocol (COW)
[141, 142]. Note that although numerous restricted attacks have been studied on
these protocols [143–146], there are no security proofs providing lower bounds on
the secret key rate for these protocols. Therefore, it is difficult to compare their
performance against discrete variable protocols4.

Differential phase shift protocol

Figure 4.10 shows the implementation of the DPS protocol [140]. In this protocol,
Alice emits a train of weak coherent pulses, each with a mean photon number less
than one. The secret key is encoded in the phase difference between two pulses: 0
(π) phase difference corresponds to the bit value 0 (1). Bob detects the pulse train
using an asymmetric interferometer, with the length difference in the two arms
corresponding to the length difference between two pulses sent by Alice. After
detecting a train of pulses, Bob will publicly announce his detection times. Then
Alice knows which of Bob’s detectors have clicked, and thus which bit value Bob

4Reference [16] contains a comparison using different security levels for different protocols.
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must have detected for each pulse.
The DPS protocol has a passive Bob, so Eve may use a copy of Bob to obtain

valid detection results. However, it is impossible for Eve to generate the same
detections in Bob without causing errors. Since the mean photon number in each
pulse is less than 1, there will be bit slots without a detection event. Imagine
that Eve wants to cause a click in detector 0 at Bob. She can do this by sending
two pulses with 0 phase difference. For these two pulses to interfere and cause a
detection event in detector 0, the first pulse must enter the long arm and the second
pulse must enter the short arm of Bob’s interferometer. However, the pulses don’t
necessarily interfere: the first pulse may take the short arm, and/or the second
pulse may take the long arm. This causes random detections at Bob, and thus
errors in the key.

The DPS protocol is tailored for an easy implementation and a high key rate.
For instance, compared to BB84, one does not have to discard half the key owing
to different basis choices. The DPS protocol has been used in several long-distance
experiments with various types of detectors [114,147,148].

Coherent one way protocol

Figure 4.11 shows the implementation of the COW protocol [141,142]. Alice sends
a train of pulses which will be grouped in pairs to encode the key. The position of
the pulse within a pair encodes the bit value of the key. Bob simply measures the
position of the pulse within a pair to determine the bit value. However, this alone
does not provide any security against an eavesdropper. Therefore, an asymmetric
interferometer followed by two monitoring detectors is coupled into the data line
with coupling ratio 1 − tB. A typical value of tB is 0.9. This interferometer
is tailored to reveal eavesdropping attempts. Alice will occasionally send two
adjacent pulses (for instance sending the bit value 1 followed by the bit value 0, or
she might simply insert a decoy state, leaving a pulse in both slots of the pair), and
then this monitoring measurement setup is equal to Bob’s measurement setup in
the DPS protocol. As described for the DPS protocol, Eve cannot fully control the
detections in the monitoring detectors, and therefore any eavesdropping attempt
will be revealed by additional clicks in monitoring detector 1 (DM1).

Compared to the DPS protocol, the COW protocol uses two pulses per bit
instead of one, so double the pulse repetition rate is needed for the same raw key
rate. Still, the COW protocol has been used in a very long distance experiment,
with a transmission distance over 250 km [26]. A COW implementation was also
part of the SECOQC quantum key distribution network in Vienna [149].
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Figure 4.11: An implementation of the COW protocol. Alice consists of a laser
source (LD), followed by an intensity modulator (IM). Similarly to the DPS pro-
tocol, Alice sends a train of pulses. In the COW protocol, the pulses are paired to
encode the bits of the key. The position of the pulse within the pair determines
the bit value. Additionally, Alice can send pulses in both slots of a pair as de-
coys (denoted as “D” in the figure) to measure the coherence of the channel. Bob
consists of a fiber-optic coupler or beam splitter with splitting ratio tB : (1− tB),
followed by a data detector (DB), used to measure the key. The other exit of the
coupler is followed by an asymmetric interferometer to monitor the coherence of
the channel, with a length difference equal to the length difference between two
pulses sent by Alice. The figure shows an example of bit values coded into the
pulse train. ND: neutral density filter (attenuator); DM1/2: monitoring detectors.

4.3 QKD networks
There are different approaches to create quantum networks, some of which have
been implemented. In one approach, optical switches are used to connect the
quantum channels of the different parties [150]. This does not increase the trans-
mission distance, but rather decreases it since the optical switches introduce loss.
A quantum router has also been proposed [151], based on wavelength division mul-
tiplexing. Then, each node is assigned to a wavelength. This makes it possible to
connect all nodes with each other.

In a different approach, networks use trusted nodes [149, 152–154]. This does
increase the transmission distance, since a trusted node can be used as a trusted
repeater. There is already a proposal to use a satellite orbiting the earth as a
trusted node [155]. Note however, that two nodes in this type of network must
trust the nodes between them in order to communicate securely. Still, this type of
network might be suitable for instance for companies which own buildings spaced
suitably apart.
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There is also an example of a combination, with parts of the network using
optical switches, and parts of the network using trusted nodes [156].
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Practical security

In this chapter, the practical security of QKD systems is reviewed. In particular,
a number of known attacks are reviewed as well as assumptions about the devices
in the security proofs. There are some implicit assumptions in QKD [16,67]:

a) The information that leaves Alice’s and Bob’s system is restricted to what
the protocol allows.

b) Random numbers originate from true random number sources.

c) Alice and Bob use unconditionally secure authentication on the classical chan-
nel (such schemes exist, for instance Wegman-Carter authentication [157,
158]).

d) Eve must obey the laws of quantum physics.

5.1 Finite key length
Most security proofs consider the secret key rate in the asymptotic limit of an
infinitely long key. Then, neither the error correcting code nor the privacy ampli-
fication has overhead. Practical systems however, can only perform post-processing
(sifting, error correction and privacy amplification) on finite blocks of bits. There
have been several investigations of finite key length QKD [159–161] with perfect
devices. The latest results show that in order to obtain 50% of the asymptotic
key rate, a block size of 106 bits is required [161], using a reasonable security pa-
rameter ε = 10−14. This is an interesting result. Very few QKD implementations
have the key rate necessary to generate 106 bits in reasonable time at a useful
distance. Therefore, only the highest key rate QKD systems have been reported
incorporating finite key effects [133,162,163].
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5.2 Photon-number splitting attack
As discussed in Section 4.1.1, most sources are not really single photon sources:
some pulses contain multiple photons. This enables Eve to perform the photon-
number splitting (PNS) attack [39]: Eve measures the number of photons in the
pulse from Alice. This is a non-demolition measurement in the sense that it does
not disturb the polarization or the phase of the photon(s). If the pulse contains
more than one photon, she keeps one photon for herself, passing on at least one
photon to Bob. If it contains a single photon, she does not send anything to
Bob. When Bob announces his measurement bases, Eve measures her photons in
the same bases to obtain identical measurement results. This gives Eve a perfect
copy of the key. Note that it is not known how to implement the non-demolition
photon-number measurement with current technology.

In this attack, Eve introduces loss. However, as discussed in Section 4.1.2 the
channel is always lossy, so Eve can replace the channel by a lossless channel, and
remove a fraction of pulses corresponding to the original loss. Let us do some
napkin-math to see how the PNS attack upper bounds the key rate according
to the transmission of the channel, when the source emits coherent states with
mean photon number µ per pulse (a full derivation can be found for instance in
References [33, 34, 40]). For a coherent state, the number of photons per pulse n
is Poisson distributed:

pn = µne−µ

n! . (5.1)

The probability that the pulse contains a photon at all is given by

pn>0 = 1− p0 = 1− e−µ ≈ µ, (5.2)

for small µ. The probability that the pulse contains more than one photon is given
by

pn>1 = 1− p1 − p0 = 1− µe−µ − e−µ ≈ µ2

2 . (5.3)

Let us assume that Bob has perfect detectors, and that the channel transmission
is given by t. Since the probability that the pulse contains at least one photon is
given by µ, the detection probability at Bob is approximately given by tµ. But we
must assume that Eve knows the value of all the µ2/2 pulses containing multiple
photons. Therefore, a simplified expression for the rate is given by

R = tµ− µ2

2 . (5.4)

Optimizing µ to maximize R gives µ = t, thus the rate scales as R ∝ t2 (as
opposed to R ∝ t for a perfect single photon source). In practice, due to the errors
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caused by dark counts, R cannot be arbitrarily small. Therefore, the maximum
transmission distance is substantially reduced by the threat of the PNS attack.
Therefore, the frequent use of coherent sources in QKD caused a search for new
protocols which were resistant to the PNS attack.

5.2.1 Scarani-Acín-Ribordy-Gisin 2004 protocol

The Scarani-Acín-Ribordy-Gisin 2004 (SARG04) protocol [42] is tailored to be
robust against the PNS attack. For the raw key exchange, the protocol is identical
to the BB84 protocol presented in Section 2.1. The difference is in the post-
processing. In the SARG04 protocol, the key bit is encoded in the basis choice of
Alice. Instead of announcing the basis, Alice announces a set of two states: the
state she sent and a random state from the opposite basis. When Bob selects the
opposite basis from Alice, he can have an unambiguous detection event such that
he deterministically knows which of the two states Alice sent, and thus which basis
she used.

Let the Z basis (= {0〉, |1〉}) represent bit value 0, and theX basis (= {−〉, |+〉})
represent bit value 1. Assume that Alice sent |0〉 (bit value 0) and announced
{|0〉, |−〉}. If Bob measured in the Z basis he must have obtained the measure-
ment result |0〉. However, the bit must be discarded since this result could have
been caused by any of the states announced by Alice. Again, if Bob measured in
the X basis and obtained the measurement result |−〉, the bit must be discarded.
If Bob measured in the X basis and obtained the measurement result |+〉, this
could only result from Alice sending |0〉. Therefore, Bob adds the bit value 0 to
the key. Note that Bob does not announce his basis choice. In fact, Bob’s basis
choice contains the value of the key (Bob’s basis is always the opposite from Alice’s
for unambiguous detection results).

To see why the SARG04 protocol is more resistant to the PNS attack than the
BB84 protocol, assume that Eve has a copy of Bob’s photon and the announcement
from Alice. Eve’s task is to use the photon to distinguish between the two non-
orthogonal states. But it is impossible to perfectly distinguish between two non-
orthogonal states. Therefore, the two photon states emitted by Alice do not always
reveal the bit value.

In the SARG04 protocol, the probability that Bob has an unambiguous mea-
surement result is 1/4, compared to 1/2 for the BB84 protocol. Still, the SARG04
protocol gives a higher bit rate at low channel transmittances, because the mean
photon number in the coherent pulse can be much higher than for BB84. For
an optimal mean photon number, one can show that the key rate scales with the
transmittance as R ∝ t3/2 [16, 164].
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5.2.2 Decoy states protocol
Another discovery countering the PNS attack is the decoy states protocol [43–45].
The difference between the original BB84 protocol and the decoy states protocol,
is that in the decoy states protocol the photon number mixture of the source is
varied1 in order to estimate the fraction of detections at Bob, where Alice emitted
single photons. In practice, an intensity modulator is added to Alice’s setup, and
Alice emits coherent states of various mean photon number. If an infinite number
of intensities is used, Alice and Bob can obtain a perfect estimate of the single
photon transmittance and error rate [45]. In practice, Alice usually emits signal
states with mean photon number µs ≈ 1, and two different decoy states, one with
a very low photon number µd1 = µd < 1 and one which is vacuum µd2 = µv = 0
[165].

The decoy states protocol fully negates the PNS attack, since Alice and Bob
lower-bound the single photon transmittance, and upper-bound the error rate for
single photons emitted by Alice. Since the probability that a single photon will
pass the channel is given by the transmittance t, the rate scales as R ∝ t. When
the decoy states protocl was implemented for the 144 km free-space link between
La Palma and Tenerife, the key rate increased one order of magnitude [27,128]!

The decoy states protocol can be considered an as auxiliary protocol on top
of the BB84 protocol, providing the transmittance and the error rate for single
photons emitted by Alice. Therefore, other security proofs for the BB84 protocol
simply assume that these parameters are available [87][166].

5.3 Trojan-horse attack
In the Trojan-horse attack [47, 48], Eve uses a powerful laser to interrogate the
system of Alice and/or Bob. In particular, it turns out that the back-reflections
passing the phase modulator in a phase encoded implementation reveal the setting
of the phase modulator. In Alice’s system, the phase modulator setting contains
the bit and basis value. Therefore, this setting must be kept secret. Most imple-
mentations of Alice contain an attenuator at the exit of Alice’s system, to attenuate
brighter pulses to the single photon level. The same attenuation would apply twice
to Eve’s pulse in the Trojan-horse attack (one time when the pulse enters Alice’s
system, and one time on the reflected pulse). Therefore, the Trojan-horse attack
can be countered by having sufficient attenuation at Alice’s exit: then the required
power in Eve’s laser would destroy the optical fiber [47].

In a BB84 implementation, Bob’s phase modulator setting contains the basis.
1In particular, the probability distributions of the photon number must be linearly indepen-

dent. This is the case for coherent states of various mean photon number.
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This is publicly announced, so protecting it is not crucial2. However, if the four-
state Bob patch is used to counter the detector efficiency mismatch loophole (see
Section 5.5), Bob’s phase modulator setting must remain secret. Also, in the
SARG04 protocol (see Section 5.2.1), the basis value is the key bit, and therefore
Bob’s phase modulator setting contains the secret key.

It is more difficult to avoid the Trojan-horse attack on Bob’s apparatus [47].
An attenuator would consume most of the precious single photons from Alice. One
solution could be a narrow bandpass filter and a circulator followed by a detector to
measure the optical power exiting Bob’s apparatus. In a plug-and-play system (see
Section 4.2.3) this is difficult because Bob’s entrance must remain bi-directional.
Another solution could be a beam splitter and a power meter at Bob’s entrance.
However, if the security of a scheme is based partly on the output of a power
meter in Bob’s system, the output of this power meter must be included in the
assumptions of the security proofs for the system.

5.4 Phase-remapping attack
In the plug-and-play system (see Section 4.2.3), Bob emits pulses which are sent to
Alice, where Alice encodes her bit and basis choice by phase modulating one of the
two pulses from Bob. However, there are two hatches in this scheme: 1) Eve could
mess with the pulses before they enter Alice’s system; 2) Alice’s phase modulator
does not switch infinitely fast between the different values. Eve could change the
intensity and/or the photon number statistics of the pulse entering Alice, but this
has been considered in security proofs [135]. However, the finite switching speed
of Alice’s phase modulator makes the encoding process dependent on the timing of
the pulses. Therefore, in the phase-remapping attack [52], Eve adjusts the timing
of the pulses from Bob such that they are phase shifted less than the value selected
by Alice. Specifically, instead of a {0, π/2, π, 3π/2} phase shift, the pulses get a
{0, δ, 2δ, 3δ} phase shift. Then, Eve can intercept the pulse from Alice and better
distinguish between the four phase settings. Therefore, she introduces less QBER
when resending to Bob. In the limit where δ → 0, the phase-remapping attack
introduces 14.6% QBER.

The phase-remapping attack has been implemented on a commercial QKD
system [56]. Since it is an intercept-resend attack, Eve has full information about
the secret key. The attack introduced a QBER of 19.7%, which is above the
theoretical 11% limit for perfect devices. Still, there are protocols which allow a
QBER up to 20% [79, 167] (with perfect devices), although they have not been
implemented.

2Note however that it is crucial that Eve does not know the basis value before Alice’s pulse
enters Bob’s apparatus. This can be ensured by a sufficiently long delay line at Bob’s entrance.
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Figure 5.1: The detector efficiency curves for a commercial QKD system from ID
Quantique. The points ’A’ and ’B’ shows the two timings referred to as t0 and
t1, where the subscript refers to the detector that is much more efficient than the
other. Reprinted from Reference [53], c©2008 The American Physical Society.

5.5 Detector efficiency mismatch
As discussed in Section 4.1.3, APD-based single photon detectors are usually gated
in order to reduce dark counts. Since QKD systems require the detection of two
different bit values, they require at least two detectors3. Then it is unavoidable
that finite manufacturing precision in the detector and the electronics, and dif-
ference in optical path length will slightly misalign the two detector gates, and
cause detector efficiency mismatch [49]. This is the case for the QKD systems
from the commercial producer ID Quantique [53][168]. Figure 5.1 shows the mea-
sured detector efficiency curves for a well-designed commercial QKD system [53].
Furthermore, the calibration routine of a commercial QKD system can be tricked
into setting a large detector efficiency mismatch [168].

When a QKD system has detector efficiency mismatch, the system can be
attacked with the following faked-state attack [49, 169]: Eve measures the state
from Alice in a random basis to obtain a measurement result. Then, she resends
the opposite bit value from her measurement result in the opposite basis, timed
to arrive at Bob’s detectors when the detector corresponding to her measurement
result has much higher detection efficiency than the other detector. As an example,
if Eve measured the bit value 0 in the X basis, she would resend the bit value 1 in
the Z basis, timed to arrive at t0 (corresponding to timing A in Figure 5.1). Since
the attack is an intercept-resend attack, Eve has full information about the key.

3It is possible to time-multiplex using a single detector, but that will not avoid detector
efficiency mismatch due to the finite precision of the time-multiplexing.
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Eve will however introduce a non-zero QBER. Let η0(t) (η1(t)) be the efficiency
curve of detector 0 (1). Let

η = min
t

{
η0(t)
η1(t)

,
η1(t)
η0(t)

}
, (5.5)

where t labels the various modes, for instance the different temporal modes. Then
Eve introduces less than 11% QBER if η ≤ 0.066 [49]. However, Eve can launch
the time-shift attack and the optimal individual attack simultaneously. Then,
the information obtained from the time-shift attack can be used to improve the
measurements of her probes. If η ≤ 0.25, this combined attack gives Eve full
information about the key while the QBER is kept below 11% [166]. The faked-
state attack also applies to the SARG04, DPS and Ekert protocols [170].

The time-shift attack [50] is based on detector efficiency mismatch. In this
attack, Eve randomly times the pulse from Alice to arrive at t0 or t1 in Bob. This
partly reveals the bit value: if the pulse arrived at t0 (t1), and Bob announces
receipt, the bit value is more likely to be 0 (1). In contrast to the faked-state attack
[49], Eve does not get the full secret key. However, the time-shift attack has a very
simple implementation, and does not introduce any extra QBER. The vulnerability
was confirmed in a commercial QKD system [53]. In the experiment, Eve got
an information-theoretical advantage in about 4% of her attempts. When Eve
has an information-theoretical advantage, she may outperform a straight brute-
force search for the secret key. In the time-shift experiment [53], the entropy of
the 1297-bit key was reduced to 21131. If this key is used for the one-time pad,
the decrease in entropy tremendously decreases the required computational power
required to decrypt the message. On one hand, such a computational task is
unfeasible now and for the foreseeable future. On the other hand, if we could trust
computationally-bounded security, why use QKD? Also, by the security definition
in Section 3.2, the security is clearly broken.

A frequently mentioned countermeasure against detector efficiency mismatch
is four-state Bob [49, 50, 78]. In a phase-encoded implementation using four-
state Bob, Bob randomly selects from four different phase modulator settings
{0, π/2, π, 3π/2} instead of only the usual two {0, π/2}. The extra π phase shift
randomly maps the bit values 0 and 1 to the two detectors. QKD using four-
state Bob has been proven secure if Bob only receives single photons [171]. The
assumption that Bob only receives single photons is clearly unrealistic, but a decoy-
detector scheme similar to decoy-states (see Section 5.2.2) can be used to estimate
the fraction of single photons received by Bob [172].

There are however some drawbacks with the four-state Bob scheme. First of
all, the phase-modulator value must now remain secret, and therefore Bob’s system
must be secured against the Trojan-horse attack. As discussed in Section 5.3, this
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is a difficult task. Also, the four-state Bob scheme does not secure against tailored
bright illumination attacks [55][57,60], and in particular not against the after-gate
attack [173,174].

In another approach, the amount of privacy amplification necessary to remove
Eve’s knowledge about the key is quantified. There has so far not been found
a squash model [74–77] working in the presence of detector efficiency mismatch,
therefore existing security proofs using single qubits do not apply to systems having
detector efficiency mismatch. However, there are several security proofs for QKD
systems with detector efficiency mismatch [41, 166][171]. In the most general
proof, with symmetry between the bases and with a perfect source, the secret key
rate is given by [41]

R ≥ −h(QBER) + η(1− h(QBER), (5.6)

where h( · ) is the binary entropy function. Here η is the smallest detection prob-
ability for a non-vacuum state received by Bob’s system. For gated systems, η is
very close to zero at the beginning and end of the gate. Therefore, the secret key
rate given by the security proofs will be zero. However, bit-mapped gating allows
the user to calculate η from Equation (5.5) using only detector efficiencies in the
central part of the gate [175]. Furthermore, it makes it possible to estimate η
from system parameters measured in the laboratory.

5.6 Detector control attacks
From Eve’s perspective, the detector control attack seems to be the most successful.
The core of the attack is the following [57, 60]: Eve measures the quantum state
from Alice in a random basis. Then a bright trigger pulse is resent to Bob when
his detectors are in a state where they are only sensitive to bright illumination4.
The power level of the pulse is adjusted such that Bob’s detector always reports
a detection event from the bright pulse, but never reports a detection event from
a pulse with 3 dB less power. Therefore, in the detector control attack, when Eve
used the same basis as Bob to measure the quantum state from Alice, Bob gets a
detection event as if there were no eavesdropper. And if Eve used the opposite basis
from Bob to measure the quantum state from Alice, her bright pulse will strike both
of Bob’s detectors with 3 dB less power, and neither detector will report a detection
event: the bit is simply lost. Against an active-basis choice implementation, this
introduces 50% total loss. In practice, this is no limitation for the attack: Eve

4Here, bright means containing a sufficient number of photons such that if the bright pulse is
sent through a 50/50 beam splitter, each exit of the beam splitter will contain close to half the
number of photons from the input pulse.
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Figure 5.2: Photo of myself during an experiment at the Group of applied physics
at the University of Geneva. In this experiment, we showed that the commer-
cial QKD system QPN 5505 from MagiQ Technologies was vulnerable to bright
illumination [57]. Photo c©2010 Vadim Makarov.

can place her intercept-unit close to Alice while compensating the loss in the
remaining fiber by resending brighter states. This perfect detector control attack
introduces zero QBER, captures the full secret key, and is implementable with
current technology.

If a non-zero QBER, or higher loss than 50% can be tolerated, it suffices that
the detectors click with a high probability when Eve used the correct basis, and
with a low probability when Eve used the incorrect basis. For a full discussion of
the constraints on the detector click probability, see Reference [174]. The detector
control attack is applicable to the BB84, SARG04 and decoy-protocols, as well as
distributed-phase-reference protocols like DPS and COW [176].

The question is if Bob’s detectors can be caught in a state where they have
such abrupt change in detection probability. For APD-based detectors, they ac-
tually have such response to bright illumination when they are biased below the
breakdown voltage (see Section 4.1.3). Gated detectors are already biased below
the breakdown voltage outside the gate. Therefore, by timing the bright trigger
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pulse after the gate, eavesdropping is possible, although introduces considerable
QBER [173, 174]. It turns out that by shining bright illumination on the detec-
tors, the bias voltage is lowered to a value below the breakdown voltage. This
is called blinding the detectors, because they remain insensitive to single photons
and have no dark counts. Both passively quenched [55], actively quenched [60],
and gated detectors [57,177] could be blinded and controlled through a variety of
techniques. The detectors in two commercial QKD systems from two different ven-
dors were blindable and controllable by bright illumination [57] (see Figure 5.2).
Furthermore, a full eavesdropper5 has been implemented and used to capture the
full key of a 290 m quantum channel in an experimental QKD system [58]. Note
that the QKD systems from some manufacturers might be immune to the simplest
blinding schemes [178][179].

SNSPDs have been reported to exhibit multiphotonic processes [102]. There-
fore, in some cases it might be possible to eavesdrop on QKD systems using
SNSPDs simply by choosing an appropriate power level for the trigger pulses [174].
We have also shown that a SNSPD can be blinded permanently6 by forcing it into
the latched state [180]. In the latched state, the SNSPD had a suitable response to
bright trigger pulses, allowing a detector control attack. Furthermore, the SNSPD
can be controlled without forcing it into the latched state [180].

Since the detector control attack can be performed with less than 100 photons
in the trigger pulse, an optical power meter seems to be unreliable to reveal the
eavesdropper [174]. Furthermore, as discussed previously, any threshold in Bob’s
system must be included in a security proof7. It seems that one solution could be a
calibrated light source inside Bob’s system to test the single photon sensitivity at
random times [58][176]. The details and implementation of such a scheme remain
a potential study for the future.

5.7 Device-independent QKD
Many security proofs use a bottom-up approach, incorporating an increasing num-
ber of imperfections. There is also a top-down approach where the number of
assumptions on the devices is reduced to a minimum. In device-independent QKD
(DI-QKD) [19, 61, 62, 91], there are barely any assumptions on the devices: the

5Interestingly, but perhaps not surprisingly, the same implementation has been used to violate
Bell inequalities even though one half of the EPR pairs were measured by the eavesdropper [65].

6Until the operator resets the bias current. Of course, a commercial QKD system using
SNSPDs must have an automatic reset feature or avoid latching by other means.

7For instance, as a countermeasure against the detector control attack it has been suggested
to monitor the photocurrent in the APDs and look for anomalously high values [181][182]. What
is an anomalously high photocurrent? For this particular example, the countermeasure is also
insufficient since a 100 photons in a trigger pulse does not cause any anomalously high value.
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security is proven solely from the non-classical correlations in Alice’s and Bob’s
data. However, three assumptions remain:

• No information can exit Alice’s and Bob’s measurement devices (only the
particles whose properties are to be measured can enter the devices).

• Alice and Bob input true randomness into their devices.

• Alice’s and Bob’s measurement devices always output 0 or 1 whenever they
both apply a basis choice, even if no photon has been detected.

Let us discuss these assumptions in detail. The first assumption is not only
necessary for DI-QKD, but also QKD in general and any implementation of a
security scheme. However, it is also equally difficult to test this assumption for a
DI-QKD scheme as for a QKD scheme. For instance, one could imagine that the
detectors emit an exotic particle, for instance the Higgs-boson, which reveals the
key and thereby violates this assumption. Therefore, it is impossible to verify that
this is the case for a real device, with 100% certainty.

As for the true randomness, this is equally important, and the assumption is
equally strict for DI-QKD and for QKD. Without true randomness, Eve might be
able to predict parts of the key.

The last of the assumptions, makes it a major challenge to implement DI-
QKD. As discussed, all channels have substantial loss, and Bob’s detectors have
a finite detection efficiency. Therefore, using current and foreseeable technology,
Bob will most of the time not get a click. Therefore, for DI-QKD, whenever Bob’s
detectors did not produce a click, Bob must simply select the bit value 0 or 1.
Since Bob’s selections will often be erroneous, in practice, the detection probability
must be at least about 90%. This is the obstacle preventing DI-QKD from being
implemented with current technology. Recently there has been a proposal to use
a heralded photon amplifier, such that Bob only applies a basis choice if a photon
entered his apparatus [66]. This eliminates the channel from the loss budget. Still,
an implementation seems to be extremely challenging, and it is unlikely that an
implementation would allow useful key rates at useful distances [66].
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Chapter 6

Thoughts on the future

History has shown that one should be careful about predicting the future, espe-
cially when it comes to technology1. There have been predictions and discussions
regarding the future for QKD [67, 183–189]. Here, I will present my perspective
on the future of QKD.

QKD is often advertised as an alternative to public key cryptography, and
the solution to the key distribution problem. I agree that QKD is superior to
public key cryptography in terms of security, but I disagree that QKD should
be compared with public key cryptography. I rather think that QKD should be
compared with a trusted courier distributing a large symmetric key. In fact, a
trusted courier must be used to distribute the QKD system. This courier (as well
as the producer of the QKD system) must be trusted because otherwise, they may
install a tap, leaking the secret key to Eve. Therefore, in terms of distribution,
I see no difference between a courier transporting a several terabyte hard drive
containing a secret key, and a courier transporting a QKD system. Either case
requires the same level of trust.

A frequently used argument against a huge symmetric key, is that any adversary
seeing the secret key makes all future communication insecure. However, I argue
that the same is the case for QKD: if Eve sees the secret key which is used for
authentication in future rounds of QKD, she may immediately call her helper
Steve, who immediately inserts an eavesdropping station performing a man-in-
the-middle attack2. Just as for the hard drive, an adversary seeing the secret key
makes all future communication insecure.

Note that a courier must also bring the first initial secret key, used to authen-
ticate the first round of QKD. While it has been claimed that this is a drawback

1Although there is a discussion whether the statement was made, the most famous example
is Thomas J. Watson, a former president of International Business Machines (IBM), whom
predicted a world market for about five computers in 1943.

2While this operation is very complicated, there is no inherent security in this complexity.
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of QKD [187], this is the case with any encryption protocol: encryption without
authentication is insecure. Alice must be sure that she is talking to Bob and not
Eve, and the only way to do so is pre-shared information3.

Therefore, it seems that the alternative to QKD is a trusted courier transport-
ing a large symmetric key. Table 6.1 compares a 3 terabyte symmetric key with
the best commercially available QKD system and the best experimental QKD sys-
tems. As far as I can see, this comparison favors sending a 3 terabyte symmetric
key with the courier instead of a QKD system. Specifically, repeating this proce-
dure every 290 days will make a bandwidth equal to the best experimental QKD
system available, without the distance limitation, and with a small fraction of the
cost.

However, one performance parameter omitted so far should be discussed in
detail: lifetime. In some cases, it is very difficult to replace the hard drive, for
instance if one of the parties is placed in a satellite [155]. Then it simply boils
down to the lifetime of the device. Consumer hard drives are known to fail after
3–5 years, but one could easily imagine that with special focus it should be possible
to produce more reliable hard drives. Meanwhile, compared to a single hard drive,
a QKD system typically consists of a huge amount of components. For instance,
although APDs seem to have low failure probabilities [191], their parameters are
known to degrade over time. This would result in a reduction in the secret key
rate. Therefore, it is not easy to compare the lifetimes of the two alternatives.

So far I have only considered point-to-point links in this comparison. However,
when one starts to consider networks, the picture changes. The hard drive example
has no reusable parts, so a pair of hard drives is required between each pair of
participants in the network. Using QKD however, one could imagine a module

3In public key authentication schemes, Alice does not need to share a secret with Bob, but
she must have Bob’s public key. Bob’s public key may be publicly available, but Alice must still
make sure that it is really Bob’s and not Eve’s public key. On the internet, this is solved using
trusted(?) third-parties (for instance VeriSign Inc.) to verify the identity of the owner of the
Bob’s key. The public keys of these third-parties are embedded in the browser.

3 terabyte Commercial Experimental
hard drive QKD [190] QKD

Price 800 ¤ 80000 ¤+ dark fiber ? + dark fiber
Key rate at 50 km N/A 3.5 kbps 1Mbps [133]
Maximum distance Unlimited 100 km 250 km [26]
Time to generate a 3
terabyte key at 50 km 24 hours? 233 years 290 days

Table 6.1: Comparison between a 3 terabyte symmetric key, the best commercially
available QKD system and the best experimental QKD systems.
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able to play the role of either Alice or Bob. Therefore, each participant only needs
one such module. This is reflected in the huge difference in storage requirements:
if there are N participants, and each pair of participants share b bits of secret key,
each participant must store a total of b(N − 1) bits. As argued above, b = 3TB
for the hard drives, while for QKD, b must just suffice to authenticate a couple of
rounds of QKD. For large networks, the difference is huge!

It is my conclusion, that in order to compete with a pair of hard drives, QKD
must increase the transmission distance, secret key rate, and move to networks.
There is intense research going on to achieve this. However, it seems to me in
terms of distance, we are approaching the limit with optical fiber as the quan-
tum channel. Therefore, in order to increase the transmission distance, quantum
repeaters [192, 193] will become necessary. It remains an open question whether
quantum repeaters can become sufficiently stable to be used in QKD.

At the end of the day, there seems to be a small, but growing market for QKD
systems. The current commercial systems combine the key generated from QKD
with a symmetric key distributed using public key encryption4. Therefore, in order
to break the security of the system, both key distribution schemes must be broken.
One could argue that this gives a higher level of security. Regardless of whether
QKD is the key distribution solution for the future, one thing is certain: as long
as there are governments and industries using QKD for high security tasks, it is
crucial that there are independent third parties scrutinizing the QKD systems to
reveal loopholes in the implementations to improve the security.

4The keys are simply XOR-ed together. Then, the combined key is as secure as the most
secure of the keys.
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Chapter 7

Conclusion and future work

Assuming that Eve must obey the laws of quantum physics, QKD has been proven
secure with perfect devices. However, when QKD is implemented, one must use
actual devices available with current technology. In this setting, the security proofs
with perfect devices are not valid any more, and the actual devices must be modeled
and incorporated into practical security proofs. While there are already security
proofs that model and incorporate certain imperfections, the actual devices do not
necessarily comply with the existing proofs.

The contribution in this thesis is twofold: a theoretical part consisting of secu-
rity proofs for practical devices, and an experimental part examining how actual
devices comply with the models of the existing security proofs. Since the source in
QKD had already received considerable attention when I entered this field, most
of this work relates to the detectors.

For the theoretical part, the results are very general security proofs, which lower
bound the asymptotic, secure key rate with arbitrary imperfections simultaneously
in the source and the detectors [41]. Furthermore, a detection scheme compatible
with these security proofs has been proposed in order to measure the detector
parameters [175].

In the experimental part, the results show that commercial QKD systems con-
tained flaws in their implementation, which would allow an eavesdropper to capture
the full secret key, using off-the-shelf components without getting revealed by er-
rors in the key [57]. This important work caused discussions [178][179], and got
considerable media attention. Some of the media attention led the public to be-
lieve that QKD was insecure. But as stated in the beginning of this chapter, QKD
is proven secure once and for all with perfect devices. In fact, spectacular security
flaws are usually found and patched in some phase of most security technologies.
One example is the widely adopted public key cipher RSA [68]. One could argue
that QKD is in this phase now, and as such I believe that this work is a mile-
stone. I believe that this work has led to increased awareness about imperfections
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in QKD, and therefore future implementations will be more secure.
There is still much work to be done. The long term goal should be to design

and implement a practical QKD scheme which is provable secure, while having
a useful key rate at a useful distance. On the theoretical side, this requires a
security proof which quantifies the imperfections in the source and receiver. At
the moment, there are proofs considering imperfections in both the source and the
receiver, but unfortunately they handle loss such a way that in practice they would
only allow very short transmission distances. This could possibly be improved by
integrating the proofs with the decoy-state approach. Furthermore, while the
imperfections are quantified, for an actual implementation to be provable secure,
the imperfection parameters of the security proof must be measured or bounded.
While we have proposed how to do this for the detectors, it is still an unanswered
question for the source.

A bigger challenge is that most QKD systems contain collective errors, for
instance the afterpulsing of the detectors and/or imperfect random number gen-
erators. This is yet to be tackled in a security proof.

Imperfections in the source and the receiver, and finite key effects have so
far been studied separately: imperfections with the asymptotic infinite key, and
finite key with perfect devices. Therefore, future security proofs incorporating
imperfections should also incorporate the finite key size.

On the experimental side there is still work to do: implement and scrutinize
a detector scheme where the detector parameters are verified to be within the
model in the security proof. In the short term, this could involve designing and
implementing a calibrated light source in Bob, to avoid detector control attacks.

For both the experimental and theoretical future, the biggest challenge remains:
will it be possible to implement QKD in a way that is provable secure?
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Security”, to be published by CRC Press in 2011/2012, arXiv: 1108.1718
[quant-ph].
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Chapter 9

Contributions in papers

This section summarizes my contribution to each of the papers contained in this
thesis. The papers are labeled with the same letters as in this thesis. When I
state that I performed the analysis or wrote whole or parts of a paper, I have had
the main responsibility and made the major contribution to the task. However,
usually the tasks have been conducted with substantial help, guidance and input
from co-authors. Figure numbers in preprints refer to the figure number in the
preprint version reprinted in this thesis.

Paper A

L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and
basis dependent detector flaws,” Quantum Information & Computation 10, 60–
76 (2010).

My contribution: Analysis of the upper bound, and the example in Section 4.2.
Writing Sections 1, 2 and 4.2, making all figures.

Paper B

Ø. Marøy, L. Lydersen and J. Skaar, “Security of quantum key distribution with
arbitrary individual imperfections,” Physical Review A 82, 032337 (2010).

My contribution: Contributing to the concept to include both imperfections
in the source and the detector simultaneously, and to the model of the system,
especially the detectors.

59

http://dx.doi.org/10.1103/PhysRevA.82.032337


Chapter 9. Contributions in papers

Paper C
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov,
“Hacking commercial quantum cryptography systems by tailored bright illumina-
tion,” Nature Photonics 4, 686–689 (2010).

My contribution: My contribution is stated in the “Author contributions” sec-
tion at the end of the paper: “V.M. conceived the idea and planned the study. L.L.
and V.M. conducted the Clavis2 experiment with the help of C. Wiechers, D.E. and
C. Wittmann. L.L. and V.M. conducted the QPN 5505 experiment. L.L. and J.S.
wrote the paper and Supplementary information, with input from all authors. J.S.
and V.M. supervised the project.”

Paper D
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov,
“Avoiding the blinding attack in QKD,” Nature Photonics 4, 801 (2010).

Note: this is a reply to correspondence [178] regarding Paper C [57].

My contribution: Writing the paper.

Paper E
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov,
“Thermal blinding of gated detectors in quantum cryptography,” Optics Express
18, 27938–27954 (2010).

My contribution: Conducting the main experiment with some guidance. Dis-
covering the thermal blinding effect, analyzing the data, writing the paper, and
making all figures.

Paper F
C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt,
V. Makarov and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New
Journal of Physics 13, 013043 (2011).

My contribution: Major participation in the main experiment, and performing
an initial, minor part of the simulation.
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Paper G
L. Lydersen, V. Makarov and J. Skaar, “Secure gated detection scheme for quan-
tum cryptography,” Physical Review A 83, 032306 (2011).

My contribution: Conceiving the main idea, performing the analysis, writing
the paper, and making all figures.

Paper H
L. Lydersen, J. Skaar and V. Makarov, “Tailored bright illumination attack on
distributed-phase-reference protocols,” Journal of Modern Optics 58, 680–685
(2011).

My contribution: Conceiving the idea (possibly independently from V. Makarov
who also had the same general idea), performing the analysis, writing the paper,
and making all figures.

Paper I
N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt,
V. Makarov and G. Leuchs, “Device calibration impacts security of quantum
key distribution,” accepted for publication in Physical Review Letters; arXiv:
1103.2327 [quant-ph].

My contribution: Major participation in one of the experiments (the data pre-
sented in figures 3 and 4), and verifying the theoretical equations (1)-(5).

Paper J
L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov
and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” ac-
cepted for publication in Physical Review A; arXiv: 1106.2119 [quant-ph].

My contribution: Conceiving the idea. Designing and having a major partici-
pation in the experiment. Analyzing the data, developing the theory, writing the
paper, and making all figures.
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Paper K
S. Sauge, L. Lydersen, J. Skaar, A. Anisimov and V. Makarov, “Controlling an
actively-quenched single photon detector with bright light,” submitted to Optics
Express; arXiv: 0809.3408 [quant-ph].

My contribution: Repeating the experiment from the initial manuscript (which
I did not co-author), and conducting additional experiments to verify the origin of
the observed detector response. Analyzing the data, and making figures 2, 3 and
5.

Paper L
L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar and V. Makarov, “Con-
trolling a superconducting nanowire single-photon detector using tailored bright
illumination,” submitted to New Journal of Physics; arXiv: 1106.2396 [quant-ph].

My contribution: Conducting the latched detector control experiment in Sec-
tion III together with V. Makarov. Writing Sections I, III, and V of the paper,
and making all figures.

Paper M
L. Lydersen, V. Makarov and J. Skaar, “Comment on ‘Resilience of gated avalanche
photodiodes against bright illumination attacks in quantum cryptography’,” sub-
mitted to Applied Physics Letters; arXiv: 1106.3756 [quant-ph].

Note: this is submitted as correspondence to a publication [181].

My contribution: Writing the paper.
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1 Introduction

Quantum mechanics makes it possible to exchange a random bit string at a distance [1, 2, 3, 4].

In theory, the key distribution is secure, even if an eavesdropper Eve can do anything allowed

by the currently known laws of nature [5, 6, 7, 8].

In practical QKD systems there will always be imperfections. The security of QKD systems

with a large variety of imperfections has been proved [5, 9, 10, 11]. However, a QKD system

is relatively complex, and loopholes and imperfections exist that are not covered by existing

security proofs. A security loophole can be dealt with in two different ways: Either you

modify the implementation, or you increase the amount of privacy amplification [12] required

to remove Eve’s information about the key. The first approach, to modify the implementation,

may often be done without decreasing the rate of which secret key can be generated. It

may however increase the complexity of the implementation, which in turn may lead to

new loopholes. The advantages of the second approach, to increase the amount of privacy

amplification, are that the apparatus can be kept as simple as possible, and that existing

implementations can be made secure with a software update. A drawback is clearly the

reduced key rate, which is considered as a critical parameter in commercial QKD systems.

One of the imperfections to be considered in this paper, is called detector efficiency mis-

match (DEM) [13]. If an apparatus has DEM, Eve can control the efficiencies of Bob’s

aEmail: lars.lydersen@iet.ntnu.no
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detectors by choosing a parameter t in some external domain. Examples of such domains can

be the timing, polarization, or frequency of the photons [13, 14].

To be more concrete, consider DEM in the time-domain. In most QKD systems Bob’s

apparatus contains two single photon detectors to detect the incoming photons, one for each

bit value. (Equivalently, two different detection windows of a single detector can be used for

the two bit values (time-multiplexed detector).) Normally the detectors are gated in the time-

domain to avoid high dark-counts. This means that electronic circuits are used to turn the

detectors on and off, creating detection windows. Different optical path lengths, inaccuracies

in the electronics, and finite precision in detector manufacturing may cause the detection

windows of the two detectors to be slightly shifted, as seen in Fig. 1. The shift means that

there exist times where the two detectors have different efficiencies.

η1(t)η0(t)

Efficiency

Time t

Fig. 1. An example of mismatched efficiency curves for two detectors in the time-domain. The

functions η0(t) and η1(t) are the efficiencies of detector 0 and 1, respectively. The parameter t can

be used to parametrize other domains as well.

Systems with DEM can be attacked with a faked-states attack [13]. The faked-states

attack is an intercept-resend attack where Eve does not try to reconstruct the original state

sent by Alice, but rather exploit the imperfections in Bob’s apparatus to hide errors. The

faked-states attack can be adapted to the Scarani-Acin-Ribordy-Gisin 2004 (SARG04), Ekert,

and Differential Phase Shift Keying (DPSK) protocols, in addition to BB84 [15]. Another

attack on systems with DEM is the time-shift attack [16]. In this attack Eve just selects

the timing of each qubit randomly, thereby gaining information about the bit value when

Bob announces which qubits were received and which were lost. The major advantage of the

time-shift attack is that it does not introduce any quantum bit error rate (QBER). It has

been demonstrated experimentally that the security of a commercially available QKD system

can be compromised with a time-shift attack [17].

A frequently mentioned countermeasure for systems with DEM is called four-state Bob

[18, 19, 13, 16]. In a phase-encoded QKD system, Bob chooses from four different phase

settings {0, π/2, π, 3π/2} instead of only two {0, π/2}. This will randomly assign the bit

values 0 and 1 to the detectors (or the detection windows, in the case of one time-multiplexed

detector) for each received state. Therefore Eve does not know which detector characteristics

that corresponds to the 0 and 1 detectors.

However, as mentioned previously [13, 16] Eve may use a large laser pulse attack [20, 21,
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22, 23] to read Bob’s phase modulator settings. In a large pulse attack Eve uses a strong laser

pulse to measure the reflections from either Alice’s or Bob’s apparatus. The setting of the

phase modulator may give a signature on the reflections, enabling Eve to obtain the phase.

First assume that Eve is able to read Alice’s modulator settings. Then Eve could obtain bit

and/or basis information before the pulse enters Bob’s apparatus, and therefore the security

would be seriously compromised. Fortunately, Alice’s implementation can easily be modified

to avoid the large pulse attack. A setup with a coherent laser source contains an attenuator,

and moving this to the end of the apparatus, as well as introducing an optical isolator, will

put impossible requirements on Eve’s laser [22]. In “plug-and-play” systems Alice already

uses a detector to monitor the input of her setup. Therefore a large pulse attack can easily

be revealed by monitoring the intensity of the input.

In a straightforward implementation of BB84, the phase modulator setting in Bob’s setup

only contains basis information. It usually poses no security threat if Eve reads the basis, as

she will get it during the public discussion anyway. One only has to avoid that Eve receives

the basis information before the pulse enters Bob’s apparatus. This can be taken care of by

placing a properly long coil of optical fiber at the entrance of Bob’s setup.

However, if the DEM loophole is patched with four-state Bob, the large pulse attack is

dangerous, because it may give Eve information about the detector assignments. Modifying

Bob’s setup to avoid large pulse attacks is not an easy task. The most practical solution

seems to be a beam splitter or an optical circulator combined with an intensity detector [22].

Note that the key rate will suffer; the the input of Bob’s setup is precious single photons.

Also the setup gets more complex, which should be avoided as far as possible, to limit the

number of “hidden surprises”. It is therefore not obvious whether such modifications should

be implemented, or whether the security should be regained with extra privacy amplification.

Even though some systems implement four-state Bob, several of them lack countermeasures

for a strong pulse attack on Bob’s side. Therefore we will pursue the latter solution, i.e., we

assume that Eve is able to read Bob’s phase modulator setting after Bob’s detection.

Security bounds state a unconditionally secure key rate, positive a range in some param-

eter(s). Ideally one should be able to prove the converse, namely that with the parameter(s)

outside this range the QKD-system is provable insecure. Unfortunately this is not always

simple. Usually there is a third range of the parameter(s) where it is not known whether the

QKD-protocol is secure. For instance with perfect devices and one-way classical communica-

tion, the QKD-system is unconditionally secure for QBER < 11 % [8], and provable insecure

for QBER > 14.6 % [24]. Until the gap is closed the security bounds represent a lower bound

on the secure key rate, and the best known attacks represent an upper bound.

Fung et al. found a security bound for QKD systems with DEM [14]. QKD systems with

four-state Bob is proved to be secure, provided Eve cannot read Bob’s phase settings with a

large pulse attack. The security proof assumes the so-called squashing model [11].

In this paper we first establish an upper bound for the secure key rate of QKD-system

with DEM by presenting two powerful attacks, one of which even applies to implementations

with four-state Bob (Section II). Then we will establish a lower bound for the secure key rate

by providing a simple security proof of QKD systems with general, basis and bit dependent

detector flaws (Section III), generalizing the proof by Fung et al. More precisely, any basis

dependent, possibly lossy, linear optical imperfections in the channel and receiver are covered
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by the proof. For example, the proof covers mixing between all available optical modes,

misalignments, mode-dependent losses, DEM, and any basis dependence of those effects. The

proof is formulated for a decoy-state BB84 protocol and does not assume a squashing model.

Finally, in Section IV we will examine some examples, including DEM, DEM with mode

mixing, and DEM with misalignment.

2 Security analysis: upper bound

In this section we analyse two powerful attacks on systems with DEM. Such attacks are im-

portant because they establish a regime where QKD-systems with DEM is provable insecure.

To analyze the attacks, for the moment we define η = max {mint η1(t)/η0(t),mint η0(t)/η1(t)} ∈
[0, 1], representing the smallest efficiency ratio available for both bit values. For individual

attacks the secret key rate is given by [12, 25] (given one-way classical communication)

R = I(α : β) − I(α : ǫ), (1)

where I(· : ·) denotes mutual information and α, β, and ǫ represent Alice’s, Bob’s and Eve’s

bits.

In the previous analysis of the faked-states attack [13], the attack was limited by the

introduced QBER rather than Eve’s insufficient knowledge about the key. By attacking only

a fraction of the bits with the faked-states attack one can compromise the security for even

higher values of η. The other fraction could be attacked with the time-shift attack [16] which

introduces no QBER.

To tailor E, the QBER measured by Alice and Bob, the fraction r attacked by the faked-

states attack is given by

r =
E

Efs
= E

1 + 3η

2η
, (2)

where Efs = 2η/(1 + 3η) is the QBER introduced by the faked-states attack. The mutual

information between Alice and Eve is given by

I(α : ǫ) = rI(α : ǫ)fs + (1 − r)I(α : ǫ)ts

= 1 − E − h(
η

1 + η
)

(
1 − 1 + 3η

2η
E

)
,

(3)

where r is given in (2) and I(α : ǫ)fs = 1 − E and I(α : ǫ)ts = 1 − h(η/(1 + η)) denote the

mutual information in the faked-states and the time-shift attack, respectively, as given in Refs

[13, 16]. h(·) is the binary entropy function. Since Alice and Bob does not know how each

bit is attacked, I(α : β) is simply given by 1 − h(E). The key rate (1) thus becomes

R = E + h(
η

1 + η
)

(
1 − 1 + 3η

2η
E

)
− h(E). (4)

Without considering DEM, Alice and Bob think that the key is secure when QBER < 11%

(symmetric protocols with one-way classical communication [8]). Solving the equality R = 0,

where R is given by (4), and setting E = 0.11 gives η = 0.215.

The above combined attack is implementable with current technology. Up to η = 0.160 it

represent an upper bound on the secure key rate (see Fig. 3). However with four-state Bob,
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the attack is impossible since the faked-states attack requires knowledge of the bit-detector

mapping before Bob receives the pulse.

For higher values of η there exists an even more efficient attack. The optimal individual

attack in the absence of imperfections is known [24]. Here Eve lets the qubit from Alice

interact with a probe. After the basis is revealed, Eve’s probe is in one of two non-orthogonal

states [24]

|ξ0〉 = |0〉 (5a)

|ξ1〉 = cosϕ|0〉 + sinϕ|1〉, (5b)

where ϕ is related to the QBER by

cosϕ = 1 − 2E. (6)

Eve has to separate between |ξ0〉, corresponding to the bit value 0 at Alice, and |ξ1〉, corre-

sponding to the bit value 1. The two states occur with an a priori probability 1/2.

In the presence of DEM, we improve the attack as follows: In addition to using a probe,

Eve launches a time-shift attack. If Bob announces receipt, the probabilities of the two bit

values is now {1/ (1 + η) , η/ (1 + η)} according to the time-shift attack [16]. Then after the

public discussion, Eve has to separate between the states (5) with the a priori probabilities

{1/ (1 + η) , η/ (1 + η)}. The optimal measurement is projective [26], and the probability p of

Eve measuring the correct bit value is found to be

p =

(
1

1 + η

)
cos2

[
1

2
arctan

(
sin 2ϕ

1
η − cos 2ϕ

)]

+

(
η

1 + η

)
sin2

[
ϕ+

1

2
arctan

(
sin 2ϕ

1
η − cos 2ϕ

)]
,

(7)

where ϕ is related to the QBER as in Eq. (6).

Since Eve has probability p to have the same bit value as Alice, I(α : ǫ) is simply 1−h(p).

I(α : β) is given by 1 − h(E). The key rate (1) for this improved optimal individual attack is

thus

R = h(p) − h(E), (8)

where p is given by (7).

Without considering DEM, Alice and Bob think that the key is secure when QBER < 11%.

Solving the equality R = 0, where R is given by (8), and setting E = 0.11 gives η = 0.252. In a

commercial QKD system η was found to be approximately 0.25 (see Fig. 3 in [17]) b. Therefore,

this attack could be used to compromise the security of such QKD systems. Note that the

attack does not require the bit-detector mapping until the post-processing step. Therefore

systems patched with four-state Bob are vulnerable to the attack combined with a large pulse

attack.

Note that the both attacks represent a substantial improvement compared to the previ-

ously published attacks which require η < 0.066 [13]. Fig. 3 shows the range of E, η which

compromises security, and compares the two attacks.

bAlso note that the DEM found in this system is heavily asymmetric, and the attacks might be more powerful
if optimized for asymmetric DEM.
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3 Security analysis: lower bound

In this section we will prove the security of the BB84 protocol in the presence of bit and

basis dependent detector flaws, and establish the secure key generation rate. We will prove the

security in a general setting, lifting the so-called squashing model assumption. That is, Eve

may send any multimode, photonic state, and Bob uses practical threshold detectors. Alice

may use a single-photon source or phase-randomized faint laser pulses; in the latter case, Alice

may use decoy states [27, 28, 29] to estimate photon-number dependent parameters. Alice’s

source is otherwise assumed perfect: It emits an incoherent mixture of photonic number states,

randomly in logical modes “0” or “1”, randomly in the X or Z bases, with no correlation

between the bits, bases, and photon number statistics [30].

The state space accessible to Eve consists of the Fock space associated with all photonic

modes supported by the channel. The channel and receiver is modeled as a basis-dependent

quantum operation, CZ and CX , in front of two threshold detectors. Here Z and X denote the

bases chosen by Bob. Since reduced detector efficiencies can be absorbed into the quantum

operations, we can let Bob’s threshold detectors have perfect efficiency. Dark counts are

attributed to Eve, and for double click events, Bob assigns a random value to his bit [9, 11].

In our security proof, the key condition of CZ and CX is that they are passive, in the sense

of

|0〉 → |0〉, (9)

where |0〉 denotes the vacuum state of all modes. In other words, vacuum incident to all

modes gives vacuum out. This condition is rather general; it includes all linear and nonlinear

optical transformations of the modes supported by the channel.

For simplicity, however, we will restrict ourselves to linear optical imperfections. Bob’s

two detectors may still have different efficiencies, depending on the time, frequency, and/or

polarization of the incoming states. Moreover, there may be imperfections in the channel

and Bob’s receiver. This can be described as arbitrary, square matrices CZ and CX , acting

on the channel modes after Eve’s intervention. The linear-optical property of CZ and CX is

ensured from the fact that they are classical transformations (or transfer matrices) operating

on the physical, photonic modes (e.g. temporal modes and polarization modes) rather than

the total Fock space of the modes. Each mode can contain any photonic state such as number

states or coherent states. Although CZ and CX have finite dimension, the associated, induced

quantum operations CZ and CX operate on an infinite dimensional Fock space. We use the

convention that Bob’s basis selector is included in CX (see Subsection 4.1).

With singular value decomposition, we can write

CZ = UZFZVZC, (10)

where UZ and VZ are unitary operators, and FZ is a diagonal, positive matrix. In addition to

the usual singular value decomposition, we have included an extra matrix factor C, governing

losses and imperfections in the channel and/or receiver, independent of the basis chosen by

Bob. The matrix C may for example describe loss of the channel and time-dependent detector

efficiencies common for the two detectors. The operator C can be absorbed into Eve’s attack,

thus it never appears in the following analysis. The unitary operators UZ and VZ mix the

modes together. For example, VZ is the result of sending the modes through a network
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isomorphic to the type in [31]. The diagonal matrix FZ represents the different efficiencies of

the two detectors (in addition to basis-dependent absorptions in the receiver), and satisfies

|FZ |2 = diag
[
ηZ0(t1) ηZ1(t1) ηZ0(t2) ηZ1(t2) . . .

]
. (11)

The parameters tj , j = 1, 2, . . . label different modes. For example, tj may correspond to

different temporal modes. In the absence of UZ and VZ , ηZ0(tj) and ηZ1(tj) can be viewed

as the efficiencies of detector 0 and 1 in the Z-basis. Otherwise the efficiencies ηZ0(tj) and

ηZ1(tj) do not necessarily correspond to the detectors 0 and 1, respectively, nor to detection

time tj . However, the notation is selected as in the special case for intuition. Note that FZ
may be represented as a collection of beam splitters with transmittivities ηZ0(t1), ηZ1(t1),

and so forth. Then each mode is incident to its own beam splitter, and the vacuum state is

sent into the other input.

The resulting model is shown in Fig. 2a. In the model we have included an extra measure-

ment, giving information to Eve whether the total state is equal to the vacuum |0〉. While

this information actually comes from Bob, it is convenient to let Eve obtain this information

from a separate measurement. Note that this extra vacuum measurement does not disturb

Bob’s measurement statistics for any basis choice.

Vacuum?

UXVX

FX

UX

FX
VX

VZ

FZ
UZ

Vacuum?

U †
Z

F̄Z
V †
Z UXVX

FX

VZ

FZ
UZ

Vacuum?

Eve

2d)

2c)

Eve

2b)

Eve

(Detectors)

2a)

Eve D

√
ηZI D

D

D

Fig. 2. a) Actual protocol. b) Estimation of Alice’s virtual X-basis measurement. c) Simplification

of Fig. 2b from Bob’s point of view. d) Actual parameter estimation in the X-basis.

We will prove security using Koashi’s argument [32, 33, 30] which we briefly summarize

here. In the BB84-like actual protocol Alice generates a large number of bipartite states,

where her part consists of a qubit which she measures randomly in the X- or Z-basis. The

other part of the pairs is sent to Bob via Eve. Bob measures what he receives from Eve

randomly in two different bases, which we will refer to as the “X-basis” or the “Z-basis”.

For example, for polarization encoding Bob’s two measurements should ideally correspond to

threshold detectors in horizontal/vertical or ±45◦ polarization bases, with double clicks as
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random assignment. Alice and Bob discard all events where they used incompatible basis.

Further he publicly announces receipt if he receives something different from vacuum. Let QX
and QZ be the fractions of non-vacuum results in each basis. Alice and Bob compare their

X-basis measurement results to estimate QX and the error rate EX . The N states measured

in the Z-basis yield NQZ non-vacuum results. For these NQZ events Alice’s measurement

result is the raw key.

The required amount of privacy amplification can be found as follows: imagine a virtual

experiment where Alice measures the qubits for the raw key in the X-basis instead of the

Z-basis. Bob tries to predict the result of Alice’s virtual X-basis measurement. Bob does not

perform such a prediction in practice; thus in this prediction we may let Bob do everything

permitted by quantum mechanics, as long as he does not alter the information given to

Eve. Let HvirtX(A|B = µ) denote the entropy of Alice’s virtual X-basis measurement result,

given measurement result µ in Bob’s prediction. It turns out that HvirtX(A|B = µ) can be

bounded using EX and QX , so assume that HvirtX(A|B = µ) ≤ H. Since the uncertainty

about Alice X-measurement is less than H, the entropic uncertainty relation [34] suggests

that any prediction (including Eves prediction) of the measurement result of Alice Z-basis

measurement will have at least NQZ −H entropy. Thus Alice can extract NQZ −H bits of

secret key. Rigorously, this rate is found by concertizing the privacy amplification procedure

by universal hashing. Although Koashi’s original proof is formulated with an obsolete security

definition based on accessible information, the proof can easily be adapted to a composable

security definition [35, 36, 37].

Bob must ensure that he has an identical raw key. Since it does not matter to Eve what

Bob does (as long as he gives Eve the same information), he measures the bits for the raw

key in the Z-basis. Alice and Bob compares a subset of the raw key to find the error rate

EZ (consuming some of the raw key, but negliable in the asymptotic limit), and Alice sends

Bob NQZh(EZ) bits of error correcting information consuming NQZh(EZ) bits of previously

established secret key. In the asymptotic limit N → ∞ the net secure key generation rate

becomes

RZ ≥ 1 − H

NQZ
− h(EZ). (12)

Note that H is needed to ensure that Alice’s key is secret, and this only requires X-

basis parameters to be estimated by Alice and Bob. Thus there is no need to invoke the

classicalization argument [7] regarding statistics of measurements involved in the simultaneous

estimation of EX and EZ .

For his prediction, Bob will use the virtual measurement in Fig. 2b. Bob first applies

the unitary operator U†
Z , followed by the filter F̄Z , and the unitary operator V †

Z . Then he

applies the operator CX = UXFXVX . Finally he performs an X-basis measurement. Note

that we retain Eve’s vacuum measurement and all components preceding it, so Eve obtains

the identical information as in Fig. 2a. The matrix F̄Z is diagonal, and is given by

F̄ZFZ =
√
ηZI, (13)

where

ηZ = min
ij

{ηZi(tj)}. (14)
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Similarly to FZ , the filter F̄Z is implementable by beam splitters acting separately on each

mode. The largest element of |F̄Z |2 is 1, while the smallest element is ηZ/maxij{ηZi(tj)}.

To analyze how well Bob performs in his prediction, we will now simplify the system in

Fig. 2b to determine Bob’s measurement statistics. To do this, we introduce an extra vacuum

measurement right before Bob’s detectors, assuming nobody records the outcome. Clearly,

Bob’s measurement statistics are not altered by the presence of this extra measurement. The

filter UXFXVXV
†
Z F̄ZU

†
Z obeys (9), being a linear optical transformation. As a result, we show

in the appendix that the output state, after the extra vacuum measurement, is independent

of the presence of Eve’s vacuum measurement (i.e., the first vacuum measurement, after UZ
in Fig. 2b). Thus, to estimate Bob’s measurement statistics, we can remove Eve’s vacuum

measurement. We end up with the simplified system shown in Fig. 2c. Note that the simplified

system is identical to the system in Fig. 2d, the actual protocol when Bob has chosen the

X-basis, except for one thing: There is an extra, mode-independent absorption ηZ in the

channel. This fact will be used for estimating the performance of Bob’s prediction.

To prove the security also for the multiphotonic case, we use the parameters q
(1)
X and

e
(1)
X assumed known from the decoy state protocol. q

(1)
X is the fraction of Bob’s X-basis non-

vacuum events that originate from single photons at Alice. e
(1)
X is the QBER for single photon

events in the X-basis (only single photons generate secure key). Consider the prediction in

Fig. 2b-c. Let NQZ be the number of states in the raw key. In a worst case, the number

of detection events that originate from single photons at Alice, will be only ηZq
(1)
X QXN ,

due to the filter
√
η
Z
I (note that ηZQX < QZ). For each of these events Bob’s entropic

uncertainty about Alice’s bit is (asymptotically) h(e
(1)∗
X ), where e

(1)∗
X is the associated error

rate. We note that e
(1)∗
X is not measured in the actual protocol; it will rather be estimated

below. For the events lost in the filter
√
η
Z
I, Bob’s entropic uncertainty about Alice’s bit is

1, since he has no detection result. Summarizing, Bob’s entropic uncertainty about Alice’s

QZN bits (corresponding to the number of detection events in Fig. 2a) is at most H =

QZN − ηZq
(1)
X QXN [1 − h(e

(1)∗
X )]. In our analysis we have ignored the events associated with

Alice sending the vacuum state [30]; their contribution will only give a marginally larger rate.

From (12) the secure key rate becomes

RZ = −h(EZ) + ηZq
(1)
X QX/QZ

[
1 − h(e

(1)∗
X )

]
. (15)

It remains to bound the parameter e
(1)∗
X , which is the QBER for single photon events in

the estimation Fig. 2b-c. Recall that e
(1)
X is the estimated QBER for single photon events in

the X-basis, Fig. 2d. The only difference between the setup in Fig. 2c and Fig. 2d is the filter√
η
Z
I, which represent identical absorption in all modes. However, the removal of detection

events by this filter is dependent on the photon number, so e
(1)∗
X 6= e

(1)
X in general c. To bound

e
(1)∗
X we use the fact that the filter only alter the detection statistics by removing detection

events. (An exception occurs for the few coincidence counts; these can be taken into account

easily.) In a worst case,

e
(1)∗
X ≤ e

(1)
X

ηZ(1 − e
(1)
X ) + e

(1)
X

≤ e
(1)
X /ηZ . (16)

cNote that although Alice send a single photon for a particular event, Eve may send any state.
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Putting these results together, we obtain the secure key generation rate

RZ ≥ −h(EZ) + ηZq
(1)
X QX/QZ

[
1 − h(e

(1)
X /ηZ)

]
. (17)

A similar result holds when Alice and Bob have chosen the X-basis in the actual protocol:

RX ≥ −h(EX) + ηXq
(1)
Z QZ/QX

[
1 − h(e

(1)
Z /ηX)

]
. (18)

Ineqs. (17) and (18) are valid for any basis and bit dependence of the channel and re-

ceiver/detectors, as long as the imperfections (CZ and CX) can be described as possibly

lossy, linear optical operators acting on the photonic modes.

To compare our result (17) to that of Ref. [14], we let Alice only send single photons. The

rate then becomes

R ≥ −h(E) + η[1 − h(E/η)], (19)

where we have assumed symmetry between the bases, and therefore omitted the Z and X

subscripts. The rate (19) coincides with the rate found in [14] (see Subsection 4.2 for a

discussion on how to identify η). Note, however, that (19) is a stronger result in the sense

that it applies to any basis-dependent linear optical imperfections, not only the case where

UZ,X = I, and VZ,X do not mix modes associated with different logical bits. Also it does not

require the squashing model assumption.

Under the assumption that Eve only sends single photons, it is easy to realize that (16)

can be replaced by e
(1)∗
X = e

(1)
X . Then (19) is improved to

R ≥ −h(E) + η[1 − h(E)]. (20)

Fig. 3 shows the security bounds resulting from (19) and (20) when the right-hand side is

set equal to zero.

4 Examples

4.1 DEM in the time-domain

Consider the case where Bob’s detectors have time-dependent efficiencies, as indicated in

Fig. 1. We assume that the efficiencies are independent of the basis chosen by Bob (FX = FZ).

The channel and receiver are otherwise assumed perfect, except for a background loss C. The

background loss may be mode dependent, but independent of the basis chosen by Bob.

With these assumptions, we may take CZ = FZC and CX = FXHC = FZHC, where

H is a block-diagonal matrix consisting of 2 × 2 Hadamard matrices H(2), interchanging the

bases Z and X for each time:

H = diag
[
H(2) H(2) H(2) . . .

]
. (21)

To maximize the secure key rate, as much as possible of the detector flaws should be absorbed

into C. Therefore, we factorize

FZ = FF ′, (22)

where

F ′2 = diag
[
η′(t1) η′(t1) η′(t2) η′(t2) . . .

]
, (23)
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Q
B
E
R

0 1η0.25

0.11

Fig. 3. Security bounds when Alice sends single photons (q
(1)
Z = q

(1)
X = 1), assuming symmetry

between the bases. The bounds are found by setting the associated key generation rates equal to

zero. Solid line: General security bound, as resulting from (19). Dash-dotted line: Security bound

(20) assuming Eve sends single photons. Dashed line: The improvement of the optimal individual

attack from Section 2, as resulting from (8). Dotted line: The combined attack from Section 2,

as resulting from (4). For the attacks it is assumed that the DEM is equal for the two bit values.

The dark grey region is proved to be insecure while the white region is proved to be secure with

extra privacy amplification. The light grey region should be assumed insecure.

and η′(tj) = max{ηZ0(tj), ηZ1(tj)}. Noting that F ′ and H commute, we can absorb F ′ into

C. The remaining diagonal matrix F then has the role of FZ (and FX) in the security proof.

The parameter ηZ = ηX to substitute into the secure key generation rate (17) is therefore the

minimum diagonal element of |F |2:

ηZ = min
t

min

{
ηZ0(t)

ηZ1(t)
,
ηZ1(t)

ηZ0(t)

}
. (24)

4.2 DEM and restricted mode mixing

Consider the case treated by Fung et al. [14], where there is no mixing between modes

associated with different logical bits. Then CZ can be written in block diagonal form

CZ =

[
C0 0
0 C1

]
C, (25)

provided we reorder the modes as in

|FZ |2 = diag
[
ηZ0(t1) ηZ0(t2) . . . ηZ1(t1) ηZ1(t2) . . .

]
, (26)

to be compared to (11). As in Ref. [14] we assume basis independence in the sense

CX =

[
C0 0
0 C1

]
HC. (27)

Here,

H =
1√
2

[
I I
I −I

]
, (28)
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with the present choice of mode order. We assume that CZ is nonsingular. (Otherwise, the

secure key generation rate would be zero.)

We should associate as much as possible of the imperfections to the common channel

operator C. Let the singular-value decomposition of C0C
−1
1 be usv, where u and v are

unitary matrices, and s is diagonal and positive. Let λ2 be the maximum of max s and

max s−1. Factorize

CZ = λ

[
us1/2 0

0 v†s−1/2

]
1

λ

[
s−1/2u†C0 0

0 s1/2vC1

]
C. (29)

Defining

C ′ =
1

λ

[
s−1/2u†C0 0

0 s1/2vC1

]
, (30)

and noting that s−1/2u†C0 = s1/2vC1, we have C ′H = HC ′. This gives

CZ = λ

[
us1/2 0

0 v†s−1/2

]
C ′C, (31a)

CX = λ

[
us1/2 0

0 v†s−1/2

]
HC ′C. (31b)

Similarly to the reasoning in Section III, Bob applies a virtual filter to transform CZ into an

operator proportional to CX . Applying

1

λ

[
us1/2 0

0 v†s−1/2

]
H

1

λ

[
s−1/2u† 0

0 s1/2v

]
,

the operator CZ is transformed into CX/λ
2. Following Section III,

√
η = 1/λ2. This gives

√
η = min(min s,min s−1). (32)

Equivalently, η is the minimum value of the eigenvalues and inverse eigenvalues of C0C
−1
1 (C0C

−1
1 )† =

C0(C
†
1C1)

−1C†
0 . This η should be substituted into (17) to find the secure key generation rate.

The parameter η can be measured as follows. For single photon input in a given super-

position ψ of logical “0” modes, the probability of a click in detector 0 is given by ψ†C†
0C0ψ.

Similarly, we may use the identical superposition ψ of “1” modes to find the detection prob-

ability of detector 1. Note that ψ denotes a classical field vector, where each element corre-

sponds to a separate mode. The parameter η turns out to be equal to the minimum detection

probability ratio

η = min

(
min
ψ

ψ†C†
0C0ψ

ψ†C†
1C1ψ

,min
ψ

ψ†C†
1C1ψ

ψ†C†
0C0ψ

)
. (33)

In other words, η is given by the minimum efficiency mismatch ratio for all superpositions of

input modes.

To see this, let us2u† be the spectral decomposition of C0(C
†
1C1)

−1C†
0 . Then we have
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C−1†
0 (C†

1C1)C
−1
0 = us−2u†, and

ψ†C†
1C1ψ

ψ†C†
0C0ψ

=
ψ′†C−1†

0 C†
1C1C

−1
0 ψ′

ψ′†ψ′

=
ψ′†u†s−2uψ′

ψ′†ψ′

= s−2.

(34)

Combining (32) and (34) gives the desired result.

4.3 DEM and misalignments

In addition to the detector efficiency mismatch in Subsection 4.1, suppose that Bob’s

detectors are misaligned. The misalignments may be dependent on Bob’s choice of basis, and

are described by unitary matrices VZ and VX . This gives the channel operators CZ = FZVZC

and CX = FXVXHC. Assuming no coupling between different temporal modes (no multiple

reflections), VZ and VX are block-diagonal matrices. For example,

VZ = diag
[
V

(2)
1 V

(2)
2 V

(2)
3 . . .

]
, (35)

where V
(2)
j are unitary 2 × 2 matrices. Here we have used the same order of modes as in the

original definition (11). Taking FX = FZ and factorizing as in Subsection 4.1, we find that

the parameter ηZ = ηX again is given by (24). The secure key generation rate is then found

from (17).

If there is coupling between modes associated with different t’s (in addition to the mis-

alignment), we must retain the general definition of ηZ in (14). For unnormalized detection

efficiencies, this definition can be rewritten

ηZ =
mini,t{ηZi(t)}
maxi,t{ηZi(t)}

. (36)

Eq. (36) is obtained by absorbing the maximum detector efficiency maxi,t{ηZi(t)} into C.

Omitting the requirement FX = FZ , (36) must be rewritten as

ηZ =
mini,t{ηZi(t)}

max (maxi,t{ηZi(t)},maxi,t{ηXi(t)})
. (37)

4.4 Characterizing DEM of Bob’s receiver

To estimate the secure key generation rate, Bob must characterize his receiver to find ηZ
and ηX (or η ≡ min{ηZ , ηX}). We note that rather different results are obtained dependent on

whether or not there are coupling between different modes. For the case of DEM in the time-

domain, since it is difficult to eliminate multiple reflections in Bob’s receiver, a conservative

approach is to use (37).

For the case with gated detectors, the efficiencies approach zero at the edges of the detec-

tion window. When there are coupling between different temporal modes, the resulting key

generation rate will therefore be close to zero. Even if no such coupling is present, the key

generation rate may approach zero, since at the edges of the detection window the efficiency
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ratio may be very small. (Although the average detection probability at the edges may be

small, Eve may compensate this by replacing the channel by a more transparent one, or by

increasing the power of her pulses [13].) A possible solution may be that Bob monitors his

input signal at all times, to ensure that Eve does not send photons outside the central part

of the window. Then η can be obtained by measuring the minimum and maximum detection

efficiency for (superpositions of) modes with times inside this central part.

Such a measurement may be cumbersome due to many degrees of freedom of the possible

inputs. Alternatively, one could specify the maximum possible amount of mode coupling in

the system, and use this information to lower bound η. Suppose that the maximum (power)

coupling from one mode j to all other modes is δ. Then the unitary matrix VZ satisfies∑
i,i 6=j |Vij |2 < δ in addition to

∑
i |Vij |2 = 1, omitting the subscript Z for clarity. Let |fj |2

be the jth diagonal element of FZ . By measuring the detection efficiency when photons are

incident to the jth mode, we obtain
∑
i |Vij |2|fi|2 = |fj |2+

∑
i,i 6=j |Vij |2

(
|fi|2 − |fj |2

)
. Hence,

the elements |fj |2 can be found from the detection efficiency as a function of j of the incident

mode, up to an error
∣∣∣
∑
i,i 6=j |Vij |2

(
|fi|2 − |fj |2

)∣∣∣ < δ. A lower bound of η is therefore

η >
mint,basis,bit(detection efficiency) − δ

maxt,basis,bit(detection efficiency) + δ
. (38)

The required measurement is to obtain the detection efficiency as a function of t and logical

bit value for both bases. For detection efficiency mismatch in the time-domain the test pulses

should be sufficiently short, in order to capture all details. An upper bound of the parameter

δ may be estimated from the (worst case) multiple reflections and misalignment’s that may

happen in the system.

5 Discussion and conclusion

In this work we have proved the security of BB84 in the presence of any basis dependent,

possibly lossy, linear optical imperfections in the channel and receiver/detectors. The security

proof thus covers a combination of several imperfections: Detection efficiency mismatch,

misalignments, mixing between the modes, multiple reflections, and any basis dependence

of those effects. Contrary to most previous security proofs, this proof does not require a

squashing detector model.

A specific implementation of a QKD system may have several different imperfections.

Ideally there should be a universal security proof with a set of parameters that cover all

(worst case) imperfections and tolerances of the equipment. We have made a step towards

this goal by describing generic imperfections at the detector, and by providing a compact

proof, which may hopefully prove useful for an even more general description.

We have established an upper bound for the secure key rate by providing two powerful

attacks. One of the attacks may be applied to systems even with the four-state Bob patch,

and this demonstrates the seriousness of the detection efficiency loophole. This attack is

based on a combination of an optimal individual attack, a time shift attack, and a large pulse

attack. As a consequence of such types of attacks, the key generation rate may not increase

substantially as a result of the four-state Bob patch. A possible countermeasure is to use the

general bounds (17) and (18) for estimating the required amount of privacy amplification.
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Appendix A Properties of vacuum measurement

Let {|n〉} be an orthonormal basis for a state space of interest. We refer to the state |0〉 as

the “vacuum state of all modes”, although it could in principle be any fixed, pure state. A

vacuum measurement is a projective measurement with projectors P = |0〉〈0| and I −P . We

claim that if F is any quantum operation satisfying (9), i.e.,

F(|0〉〈0|) = |0〉〈0|, (A.1)

the presence of a vacuum measurement before F does not change the statistics and output

state of a vacuum measurement after F , see Fig. A.1.

This result can be proved by using the fact that any quantum operation can be viewed as

a unitary transformation on an extended state space, with a standard state |0〉aux as auxiliary
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Vacuum? Vacuum? Vacuum?

F F≡

Fig. A.1. The statistics and output state of the vacuum measurement after F is not changed by

the introduction of a vacuum measurement before F .

input. Due to (A.1), we can assume that the unitary transformation transforms

|0〉 ⊗ |0〉aux → |0〉 ⊗ |0〉aux, (A.2)

with no loss of generality.

Consider the right-hand side of the identity (Fig. A.1). Let Paux = |0〉aux〈0|aux. A

vacuum measurement at the input can now be described as a projective measurement with

P ⊗ Paux and I − P ⊗ Paux, since the auxiliary input is fixed at |0〉aux. Clearly, it does not

matter if we measure the auxiliary output with projectors Paux and I − Paux. In total, the

extended measurement at the output is described by projectors P ⊗ Paux, P ⊗ (I − Paux),

(I−P )⊗Paux, and (I−P )⊗ (I−Paux). Transforming the projector P ⊗Paux backwards, we

find that the corresponding projector at the input is P ⊗ Paux. In other words, the extended

vacuum measurement at the output contains the vacuum measurement at the input, so the

latter is redundant.
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I. INTRODUCTION

Quantum key distribution (QKD) is a method for distribut-
ing a secure key to two communicating parties, Alice and Bob.
The most common QKD protocol, Bennett-Brassard 1984
(BB84) [1], has been proved secure by a number of approaches,
some of which include different kinds of imperfections in the
equipment [2–7]. The ultimate goal of QKD security analysis
is to take all kinds of imperfections into account, at least those
that cannot be eliminated completely by a suitable design
of the setup. So far, most of the available security proofs
for BB84 consider imperfections at the source or detector
separately. An exception is the work by Gottesman et al. [5],
which treats the security in the presence of source flaws and a
squashing detector with certain limited imperfections. Also
of interest is the article by Hayashi [8], which combines
finite-length key analysis with photon number imperfections
at the source. Proving security for a realistic system with
arbitrary imperfections simultaneously in the source, channel,
and detectors has so far been an open problem.

A particularly suitable approach for practical QKD is to
limit the assumptions about the equipment. By considering
entanglement-based protocols with detectors in both ends of
the system [9], one can prove security in a rather general setting
[10], assuming collective attacks and individual imperfections
[11]. While these protocols and security proofs are promising,
they do not necessarily provide security for realistic devices.
All realistic systems have large losses due to the channel and
limited detector efficiencies. An eavesdropper Eve may use
imperfect detection efficiencies to effectively control Bob’s
basis choice [12,13]. Using this detection loophole, she may
perform the identical measurement as Bob to obtain a perfect
copy of the key.1

In this work we prove security for BB84 with any combi-
nation of individual imperfections, as well as channel losses.
By individual imperfections we mean that the operation of the
devices for a particular signal is independent of earlier signals.
To obtain such generality, we describe the actual physics

*oystein.maroy@iet.ntnu.no
1For any protocol, Bob’s basis choice (or more generally, mea-

surement setting) must be random and come from a trusted
random-number generator; otherwise, Eve could perform the same
measurement as Bob to obtain a perfect copy of his result.

in the protocol rather than using, for example, squashing
models with “tagging.” Thus, the detectors are described
as a basis-dependent quantum operation on the actual state
space in front of a three-outcome measurement (“0”, “1”, and
“vacuum”). Describing the detector in this way also enables
an elegant solution to the problem of combining errors in the
detectors and errors in the source.

To get around the detection loophole, we anticipate that
at least two parameters must be known or bounded about
the system; one for the source and one for the detectors.
Our proof is formulated with two such parameters; the
basis dependence of the source and a detector-blinding
parameter. In addition to these parameters, we include a
third parameter quantifying leakage from Bob’s detectors.
Once these parameters are bounded, the system may con-
tain bit and basis leakage from Alice, multimode behavior,
basis-dependent misalignments, losses, nonlinearities, basis-
dependent threshold detectors with detector efficiency mis-
match and information leakage, dark counts, etc. In that sense,
our proof offers the generality of the entanglement-based
scenarios [11], applies to realistic scenarios with loss, and pro-
vides universal composable security against the most general
attacks.

II. PROTOCOL

Consider the following BB84-like protocol as the actual
protocol. Alice chooses basis a = Z or a = X randomly
according to some probability distribution and prepares the
state |χa〉, where

|χZ〉 = √
pZ|0〉|β0〉 +

√
1 − pZ|1〉|β1〉, (1a)

|χX〉 = √
pX|+〉|β+〉 +

√
1 − pX|−〉|β−〉. (1b)

Here pZ and pX are probabilities, |0〉,|1〉 are some orthonormal
qubit basis states, and |±〉 = (|0〉 ± |1〉)/√2. Alice measures
the qubit in the a basis (this measurement can be delayed
to the end of the protocol). She repeats the procedure to
obtain a large number of “β states,” which are sent via
Eve to Bob. These β states include any system that is
correlated to Alice’s system and to which Eve has access.
Note that Eve is free to send anything to Bob, including
parts of β and/or any state of her own choice. Depending
on Alice’s source, the four different β states will differ in
photon number statistics, polarization, wavelength, etc. Any

1050-2947/2010/82(3)/032337(7) 032337-1 ©2010 The American Physical Society
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leakage in nonphotonic side channels will also be included
in these states. With no loss of generality, the β states
are assumed to be pure; if they were mixed, we could
simply purify them, sending the auxiliary, purifying system to
Eve.

For each state received by Bob, he chooses a “basis”
variable b according to some probability distribution and
conducts measurements Mb. The measurements Mb have three
outcomes: “0”, “1”, and “vacuum.” When he obtains “0” or
“1”, he publicly acknowledges receipt. After transmission,
Alice and Bob broadcast a and b. When b = X, they openly
compare their measurement results to estimate the fraction qX

of nonvacuum events at Bob when a = X, the corresponding
error rate δX, and the fraction qph of nonvacuum events when
a = Z. After this estimation only the n states for which
a = b = Z are kept. Discarding all events where Bob detected
“vacuum,” Alice and Bob each end up with nqZ bits. Alice’s
bits are the raw key.

We now summarize Koashi’s generic framework for secu-
rity proofs [14,15]. Imagine a virtual experiment where Alice
measures her final nqZ qubits (corresponding to the raw key)
in the X basis instead of Z basis. In this virtual experiment,
instead of measuring MZ , Bob now tries to predict the outcome
of Alice’s measurement. To do this, he may do whatever is
permitted by quantum mechanics, as long as he does not alter
the information given to Eve. Let HvirtX(A|B = µ) denote the
entropy of Alice’s result, given measurement result µ in Bob’s
prediction. Let HvirtX(A|B = µ) � H for some constant H .
Since the uncertainty after Bob’s prediction is less than H ,
the entropic uncertainty relation [16] suggests that anyone
(including Eve) cannot predict the outcome of a Z-basis
measurement by Alice with less entropy than nqZ − H . This
indicates that Alice can extract nqZ − H bits of secret key.
The quantity H is to be found from the estimated parameters
qX, δX, and qph.2 The detailed proof [14] of the fact that
Alice can extract nqZ − H bits of secret key is based upon
the universal, composable security definition and consid-
ers the actual privacy amplification protocol by universal
hashing.

To ensure that Bob has the identical key, we note that
it does not matter to Eve what Bob does (as long as he
gives the same receipt acknowledgment information); he
can as well measure MZ . Then Bob obtains the identical
raw key from his measurement result and nqZh(δZ) extra
bits of error correction information from Alice, consuming
nqZh(δZ) of previous established secure key. Here h(·) is the
binary Shannon entropy function, and the error rate δZ can
be estimated by sacrificing a subset of the raw key (whose
size we can neglect in the asymptotic limit n → ∞). We
therefore obtain the asymptotic net secure key generation
rate

RZ � 1 − H/nqZ − h(δZ). (2)

2The Z-basis error rate δZ is not needed to ensure that Alice’s
key is secret; thus, there is no need to invoke the classicalization
argument [17] regarding statistics of measurements involved in the
simultaneous estimation of δX and δZ .

III. INDIVIDUAL IMPERFECTIONS IN THE DETECTORS

We first consider the situation where Alice’s source is
perfect (|χX〉 = |χZ〉) and Bob’s detectors can be subject to
any kind of individual imperfections. With the understanding
that Bob chooses his bit randomly for coincidence counts [3,5],
his detectors can be modeled by a basis-dependent quantum
operation (EZ and EX) in front of a measurement with three pos-
sible outcomes: “0”, “1”, and “vacuum.” Note that there is no
need to require a squash model [5,18,19] in our proof as Bob’s
basis selector is included into the basis-dependent quantum
operation.

In addition to the optical modes, there may also be other
relevant degrees of freedom in the detector. For example,
dark counts are caused by physical processes internally in the
detector. Thus, we consider an extended state space consisting
of the Fock space of all optical modes in addition to the state
space associated with “electronic” degrees of freedom inside
the detectors. Pessimistically, we let Eve control all degrees of
freedom.

The quantum operations EZ and EX are decomposed as
follows: First there is a basis-dependent quantum operation
(FZ and FX) acting on the Fock space associated with all
optical modes. This operation contains Bob’s basis selector.
The operations FZ and FX are assumed to be passive in the
sense that if vacuum is incident to all modes, there will also be
vacuum at the output. Then there is another quantum operation
F describing interaction between the photonic state and the
internal degrees of freedom in the detectors (see Fig. 1). The
quantum operation F may be active in the sense that even
though vacuum is incident to all optical modes, there may
be nonvacuum detections. When the optical modes contain the
vacuum state, we can (pessimistically) assume that Eve has full
control over Bob’s detectors through F ; in other words, she
controls the dark counts directly with the “electronic” modes.
The quantum operation F is assumed to be independent of

“0”

“vacuum”
“1”

F
σ2

σ

To Eve

basis b

Eb

Fb

σ1 ⊗ σ2

Alice’s bit

From Eve

ρ

FIG. 1. Bob’s detectors consist of a basis-dependent quantum
operation (EZ = F ◦ FZ and EX = F ◦ FX) in front of a three-
outcome measurement. The fact that Eve gets arrival information from
Bob is included through a dedicated vacuum measurement preceding
Bob’s three-outcome measurement. On the input side of F , the lower
line contains the electronic modes of the detector, while on the output
side of F , the lower line indicates the part of the Hilbert space leaked
to Eve. Alice’s classical bit, indicated in the upper part of the figure,
is included in the state σ .
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Bob’s basis choice. This assumption is natural as Bob’s basis
choice does not influence internal degrees of freedom in the
detector. In other words, when Eve emits the vacuum in all
optical modes, Bob’s basis choice will not affect the detection
statistics.

To achieve a completely general detector model, we
should not only let Eve control the detectors; in addition,
we must let information return to Eve. Consider the case
where Bob has chosen the Z basis. In the most general
case, the information leakage is quantum; that is, a part of
the total Hilbert space is given directly to Eve. Replacing
this part of the Hilbert space with some standard state σ2,
we can quantify the leakage εZ by the trace distance D(·,·)
as follows:

εZ = min
σ2

max
ρ

D(σ,σ1 ⊗ σ2). (3)

Here ρ is any state at Bob’s input (including Alice’s part of
the system; see Fig. 1), σ is the state of Alice and Bob before
leakage, and σ1 = Tr2(σ ) is the state of the remaining Hilbert
space after leakage. Note that these density operators refer to a
single signal, not the entire block of n signals. The parameter
εZ measures the correlation between the leaked quantum
state and the state of Alice and Bob, maximized over states
sent by Eve. More precisely, εZ is the maximum probability
that the actual state before leakage can be distinguished
from the state where the leaked part is replaced by the
standard state σ2 [20]. Equation (3) has another very useful
physical interpretation: Choose a fixed σ2, dependent on EZ ,
but independent of the state coming from Eve. For any σ ,
the probability of a measurement result of σ1 ⊗ σ2 deviates
no more than εZ from the corresponding probability when
measuring σ [20].

Although we now have a general detector model, we add
one little feature. In the actual protocol, Eve gets to know
whether a particular signal was detected. This can be included
as an extra projective measurement with projectors P and
I − P , where I − P is a projector onto the subspace corre-
sponding to detection result “vacuum” in Bob’s measurement.
Clearly, this addition does not disturb Bob’s measurement
statistics. The composed measurement consisting of EZ fol-
lowed by this projective measurement will be referred to as
Eve’s vacuum measurement. It can be described by some
positive operator-valued measure (POVM) elements E and
I − E, where I − E corresponds to detection result “vacuum”
at Bob. Including Eve’s vacuum measurement separately,
rather than absorbing it into the quantum leakage (3), leads
to a better rate. The reason is that the information from the
vacuum measurement is classical and available to Bob, as
opposed to general, leaked quantum information.

Having described the model, we now turn to the security
analysis. As before, Alice extracts the key in the Z basis. In
Koashi’s security proof, Bob wants to predict the outcome
of a virtual X-basis measurement by Alice. In this virtual
prediction there is only one important restriction: Bob is not
allowed to alter the information going to Eve. Thus, Eve’s
vacuum measurement must be retained.

The setup used by Bob to perform the virtual X-basis
prediction is depicted in Fig. 2. The state from Eve is incident
to a first vacuum measurement, Bob’s vacuum measurement,

“0”
“1”
“vacuum”EXEZ

From Eve

To Eve

Q, I − Q

ersal
Rev-

P, I − P

FIG. 2. Bob’s setup for virtual X-basis prediction. The optical
and electronic modes are denoted by a single line in this figure.

a projective measurement with certain projectors Q and
I − Q, corresponding to results “nonvacuum” and “vacuum,”
respectively. Then it goes through the quantum operation
EZ and leaks partially back to Eve. The remaining part is
measured by Eve’s vacuum measurement and sent through
a reversal operation. The goal of the reversal operation is
to reverse the effect of the vacuum measurement so that the
combined operation consisting of Eve’s vacuum measurement
and the reversal operation is identity, with a certain probability.
Finally, the quantum operation EX and Bob’s three-outcome
measurement are applied.

To analyze Bob’s virtual prediction, we note the following
observations. The quantum operation EZ can be viewed as
a unitary operation on an extended state space. Moreover,
since Bob’s reversal operation does not have to be realizable
in practice (only in principle), we may assume that Bob has
access to any extra degrees of freedom used to “unitarize”
EZ . He does not have access to the quantum state leaked to
Eve; however, the leakage disturbs the probabilities of Bob’s
prediction by no more than εZ . Therefore, for the moment
we can ignore the leakage, taking it into account in the final
expression for the key rate.

To proceed, we need the following results.
Lemma 1 (Koashi and Ueda [21]). Let E, acting on a

Hilbert space H, be a POVM element associated with some
measurement M . If any state in some subspace Q ⊆ H
is measured with M , the measured state can be reversed
to the original state, with maximum joint probability of
outcome E and successful reversal inf|�〉∈Q,〈�|�〉=1〈�|E|�〉.
It is possible to know when the reversal is successful or
not.

Lemma 2. The output of a quantum operation Eb is measured
with projectors P0, P1, and I − P0 − P1, corresponding to
detection results “0”, “1”, and “vacuum,” respectively, or
alternatively, with P ≡ P0 + P1 and I − P . Let I − Q be a
projector onto an input subspace of Eb that leads to detection
result “vacuum” with certainty. The measurement statistics
are not changed by the presence of a projective measurement
{Q,I − Q} before Eb.

Proof. Lemma 2 is not as trivial as it may appear at first sight
since states in the support of Q may also lead to detection result
“vacuum.” Thus, the measurement before Eb gives extra infor-
mation. Nevertheless, the quantum operation Eb can be viewed
as a unitary transformation on an extended Hilbert space, with
a standard state as auxiliary input. Clearly, it does not matter
if we measure the extra degrees of freedom at the output.
This measurement can be constructed so that the total output
measurement distinguishes between input states in the support
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of Q or I − Q. Then, an input measurement {Q,I − Q}
is redundant.

More precisely, the unitary operator can be chosen such
that the projective measurement at the output is implemented
as a measurement of a single qutrit in the computational basis.
Thus, it transforms

|01〉|0〉aux → |v〉|ψ1〉, (4a)

|02〉|0〉aux → |v〉|ψ2〉, (4b)

and

|11〉|0〉aux → |v〉∣∣φv
1

〉 + |0〉∣∣φ0
1

〉 + |1〉∣∣φ1
1

〉
, (5a)

|12〉|0〉aux → |v〉∣∣φv
2

〉 + |0〉∣∣φ0
2

〉 + |1〉∣∣φ1
2

〉
, (5b)

etc. Here |0i〉 and |1i〉 are bases for the support of I − Q

and Q, respectively; |0〉aux is the auxiliary standard state; and
|0〉〈0| = P0, |1〉〈1| = P1, and |v〉〈v| = I − P0 − P1. The ψ

and φ vectors are (not necessarily normalized) states of the
remaining part of the output state space. Since 〈1i |0j 〉 = 0, we
have 〈φv

i |ψj 〉 = 0 for any i,j . Thus, by a measurement of the
ψ or φ part of the output state space in addition to the qutrit,
we can distinguish between the |0i〉 states and |1i〉 states. �

We define the projector I − Q so as to project onto vacuum
in all photonic modes and onto the biggest subspace of the
“electronic” modes that gives detection result “vacuum” in
Eve’s vacuum measurement. The orthogonal subspace, which
is the support of Q, is denoted Q. Lemma 2 ensures that
Bob’s vacuum measurement does not change the statistics of
Eve’s vacuum measurement. When Eve’s vacuum measure-
ment gives result “vacuum,” or the reversal operation is not
successful, the reversal operation is assumed to output a state
in the support of I − Q. Thus, in these cases the output of
Bob’s virtual prediction is “vacuum” with certainty.

If the outcome of Bob’s vacuum measurement is “vacuum,”
the outcome of Eve’s vacuum measurement is “vacuum,”
and the reversal operation is successful with certainty. Suppose
the outcome of Bob’s vacuum measurement is “nonvacuum.”
According to Lemma 1, the maximum joint probability of
result E in Eve’s vacuum measurement and successful reversal
is ηZ = inf|�〉∈Q,〈�|�〉=1〈�|E|�〉. When result E and the
reversal is successful (and Bob knows when it is), the statistics
of Bob’s measurement compared to Alice’s virtual X-basis
measurement will be identical to that of Alice’s and Bob’s
ordinary parameter estimation in the X basis, except for
any disturbance by Bob’s vacuum measurement. According
to Lemma 2 such disturbance does not exist. The number
of detection events E in Eve’s vacuum measurement is
nqZ; of these nqXηZ is successfully reversed and detected
as “0” or “1” in Bob’s virtual prediction. Thus, we obtain
H � (nqZ − nqXηZ) + nqXηZh(δX), which gives us the rate

RZ � ηZqX/qZ[1 − h(δX)] − h(δZ). (6)

The parameter ηZ = inf|�〉∈Q,〈�|�〉=1〈�|E|�〉 is the mini-
mum probability that a state in Q gives result E by Eve. This
parameter has a clear physical interpretation. When vacuum
is incident to the optical modes, recall that with no loss of
generality we may assume that Eve has full control of the
detectors through the “electronic” modes. Then there are no
losses of her excitation in the “electronic” modes through the

quantum operation F . Thus, we identify ηZ as the minimum
probability that a nonvacuum photonic state is detected by
Bob. In other words, 1 − ηZ is the maximum probability that
a nonvacuum photonic state is absorbed in the detectors and
detected as vacuum in the actual setup (Fig. 1).

So far we have ignored the effect of any quantum leak-
age from the detectors. Parametrizing the leakage by (3),
εZ quantifies the maximum deviation of any measurement
probabilities. In the absence of leakage, the probabilities
of correct and incorrect predictions are qXηZ(1 − δX) and
qXηZδX, respectively, while the probability of vacuum result
is 1 − qXηZ . When there is leakage, in the worst case these
probabilities are changed to qXηZ(1 − δX) − εZ , qXηZδX +
εZ − ξ , and 1 − qXηZ + ξ , respectively. Here ξ is an unknown
parameter satisfying 0 � ξ � εZ . Of the nqZ nonvacuum
results in Eve’s vacuum measurement, there are n(qXηZ − ξ )
nonvacuum results in Bob’s virtual prediction. This leads to

H � nqZ − n(qXηZ − ξ )

+ n(qXηZ − ξ )h

(
qXηZδX + εZ − ξ

qXηZ − ξ

)

� nqZ − nqXηZ + nqXηZh

(
δX + εZ

qXηZ

)
. (7)

The last inequality in (7) can be found after some algebra
using the facts that h(u) − h(u − �) � h′(u)� for � � 0 and
u � 1/2, and h′(u)(1 − u) � 1 for u � 0.277. Here we have
set u = δX + εZ

qXηZ
.

This gives the rate

RZ � ηZ

qX

qZ

[
1 − h

(
δX + εZ

qXηZ

)]
− h(δZ) (8)

for δX + εZ

qXηZ
� 0.277. An expression for the rate, also

valid for 0.277 � δX + εZ

qXηZ
� 0.5, can be derived straight-

forwardly; however, this regime is only relevant for very small
δZ and large δX and/or εZ

qXηZ
.

IV. INDIVIDUAL IMPERFECTIONS IN
THE ENTIRE SYSTEM

From the previous section we note that when the reversal
operation is successful (and Bob knows when it is), the
measurement statistics in the prediction becomes identical to
the statistics if Bob measured in the X basis. This makes it
possible to consider simultaneous imperfections at the source
and detector. We may then consider the case where Alice
creates a general state ρa depending on the basis choice a. The
basis dependence of the source is characterized by the fidelity
F (ρZ,ρX) ≡ Tr(

√
ρZρX

√
ρZ)

1
2 . We let this dependence be

bounded by a parameter � defined by F � 1 − 2�. By
Uhlmann’s theorem there exist purifications, |χa〉 of ρa , such
that 〈χZ | χX〉 = 1 − 2�. We note that |χa〉 can be expressed
as in Eq. (1).

Again, we first ignore the detector leakage, taking it into
account in the final expression for the rate. Since Bob wants
to predict Alice’s virtual X-basis measurement on |χZ〉, the
error rate δX and the transmission rate qX in (6) must be
replaced with δph and qph, respectively. Here δph is the error
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rate when Alice measures her part of |χZ〉 in the X basis and
Bob measures his part using MX.

In BB84 such a measurement is not actually performed, but
δph can be bounded from the measured error and transmission
rates. We expand the statistical argument from [14] to include
“vacuum” as a possible measurement result. Assume that for
the systems used in the random sampling Alice chooses her
basis by measuring a quantum coin in the Z basis. Then
these systems can be described by state |〉 = (|χZ〉|0〉 +
|χX〉|1〉)/√2, with the last system being that of the quantum
coin.

We then consider the situations where Alice and Bob
both conduct X-basis measurements. For each measurement
a variable t is assigned the value t = 0 if their results are
the same, t = 1 if there is an error, and t = 2 if Bob gets
no result. Alice then measures her quantum coin in the Z

basis, getting the result c. We obtain the following conditional
probabilities.

p(t = 0|c = 1) = qX(1 − δX), (9a)

p(t = 0|c = 0) = qph(1 − δph), (9b)

p(t = 1|c = 1) = qXδX, (9c)

p(t = 1|c = 0) = qphδph, (9d)

p(t = 2|c = 1) = 1 − qX, (9e)

p(t = 2|c = 0) = 1 − qph. (9f)

Assuming that the systems used to estimate error and transmis-
sion rates are randomly chosen, the probabilities given c = 0
are also valid for the systems used to extract the raw key.

Now assume that for some states Alice measures the coin
in the X basis, getting measurement result c̄. Note that∑

j

p(t = j )p(c̄ = 1|t = j ) = �. (10)

Using (9), (10), and the bound [22],

[1 − 2p(c̄ = 1|t = j )]2 + [1 − 2p(c = 0|t = j )]2 � 1,

we find

1 − 2� �
∑

j

√
p(t = j |a = Z)p(t = j |a = X)

= √
qX(1 − δX)qph(1 − δph) + √

qXδXqphδph

+√
(1 − qX)(1 − qph). (11)

δph can now be taken to be the maximal value for which the
inequality is obeyed.

Similarly to the analysis in the previous section, we
can include detector leakage by modifying the detection
probabilities. As in (8), the leakage is accounted for by adding
a term proportional to the leakage parameter εZ ,

δ̃ph � δph + εZ

qphηZ

. (12)

We have arrived at our main result.
Theorem 1. In BB84 the basis dependence of Alice’s

source is bounded by F (ρX,ρZ) � 1 − 2�. Bob’s detectors are
modeled by a passive, basis-dependent quantum operation (FZ

and FX) acting on the multimode photonic state, followed by a

basis-independent quantum operation (F) describing interac-
tion with internal degrees of freedom in the physical detector,
followed by a measurement with three outcomes: “0”, “1”, and
“vacuum.” Suppose Eve controls the photonic modes and the
internal degrees of freedom in the detectors and that a quantum
state leaks back to Eve from the detectors. Then the asymptotic
secure key generation rate for key extraction in the Z basis
satisfies

RZ � ηZqph/qZ[1 − h(δ̃ph)] − h(δZ), (13)

provided δ̃ph � 0.277. Here δZ is the estimated error rate in the
Z basis, δ̃ph is given by (11) and (12), 1 − ηZ is the maximum
probability that a nonvacuum photonic state is detected as
“vacuum,” and qph/qZ is the ratio between the transmission
rates for Bobs measurements MX and MZ given that Alice
sends in the Z basis.

The rate (13) is valid for any kind of individual imperfection
and loss. The parameters qX, qZ , qph, δX, and δZ are estimated
directly in the protocol, while �, ηZ , and εZ characterize the
practical setup.

V. DISCUSSION OF RESULTS

In this discussion we assume that the quantum channel is
symmetric with respect to loss; that is, qX = qph = qZ ≡ q.
This will be approximately true for most setups. We also
assume no information returned to Eve from the detectors,
εZ = 0, anticipating that such errors could be avoided by
modifying the setup.

In this case (11) reduces to

2�

q
� 1 − √

(1 − δX)(1 − δph) − √
δXδph (14)

and the estimated worst possible error rate is

δph = min

{
1

2
, δX + 8

�

q

[(
1 − �

q

)
(1 − 2δX)

+
√

�

q

(
1 − �

q

)
δX(1 − δX)

]}
. (15)

We see that errors in the source are more critical when the
transmission is low. In fact, both the basis dependence of
the source, �, and transmission rate, q, only appears in the
equation in the form �

q
. If the source is perfect, � = 0,

loss in the channel does not affect the secret key rate. This
relationship between the source error and the transmission
rates is due to Eve’s control of the channel, which let her
pass to Bob only the systems where her operation has given
her the most information for the least disturbance. The upper
limit on the source error for which key gain is possible
is �

q
�

√
2−1

2
√

2
≈ 0.146. This is independent of the blinding

parameter ηZ , as long as it is nonzero, but demands error rates
equal to zero. For larger error rates the limit depends heavily
on ηZ (Fig. 3).

Channel loss and imperfect sources only contributes to an
increase in δph. A better estimate of δph would increase the
rate. This is related to the method of decoy states [23–25],
where Alice instead of producing ρZ , sometimes produces a
decoy state with a different mean photon number. From the
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FIG. 3. Plots showing the security bounds RZ = 0 for different
values of the blinding parameter ηZ , the basis dependence of the
source �, and the error and transmission rates δ and q. The security
bound is found by setting RZ = 0 in (13). Positive key gain is possible
for parameter values to the left of the curves. We have assumed
εZ = 0, δX = δZ = δ, and qX = qph = qZ = q.

transmission and error rates for this state, Alice and Bob are
able to derive a stricter bound on δph, effectively reducing
RZ’s dependence of channel loss. To generalize this method,

using decoy states where other properties of the signal state are
varied might prove useful when operating with an imperfect
source. However, creating such states may require the detailed
output statistics of the source and might be experimentally
difficult in general.

Considering the special case of a perfect source, our
rate is larger than the rate proved for restricted detector
flaws in previous literature [6,7]. Key gain is possible for
ηZ � h(δZ )

1−h(δX) . Unlike previous results, our rate applies to all
relevant, individual imperfections at the detectors, for ex-
ample, mode coupling including misalignments and multiple
reflections, nonlinearities, mode-dependent losses and detector
efficiency mismatch, and any basis dependence of those
effects. Moreover, it applies to threshold detectors with dark
counts.

Note that the detector-blinding parameter ηZ is not sup-
posed to contain the transmission efficiency of the channel.
Generally, one should factorize EZ = ẼZ ◦ E and EX = ẼX ◦ E
to put as much as possible of the imperfections into the
basis-independent operation E . By absorbing E into Eve and
treating ẼZ and ẼX as the new imperfections, ηZ will be
maximal. For example, for the case where reduced detector
efficiencies can be described as beam splitters in front of
ideal detectors, and if there is no coupling between modes
associated with different logical bits, ηZ is the minimum
ratio between the two detection efficiencies [7]. For detec-
tors that cannot be modeled by beam splitters in front of
ideal detectors, our security proof clearly shows the danger
associated with the possibility of detector blinding [13]: If
the detection probability of a nonvacuum state is zero, our
proof predicts zero key rate. For the case where the detectors
can only be partially blinded, our proof can predict positive
rate.

Returning to the general case, the rate (13) is dependent
on �, ηZ , and εZ , in addition to estimated parameters. For a
specific QKD setup, � and εZ must be upper bounded, and ηZ

must be lower bounded. How to deal with this in practice is an
interesting question for future research.

VI. CONCLUSION

We have proved security for arbitrary, individual imper-
fections in a BB84 system. The detector model includes
a basis-dependent quantum operation, possibly with quan-
tum leakage back to Eve, followed by a three-outcome
measurement with outcomes “0”, “1”, and “vacuum.” Such
a general detector model can describe detector efficiency
mismatch, nonlinear blindable behavior, response to multiple
modes, mode coupling and multiple reflections, misalign-
ments, back-reflection leakage, nonoptical leakage, etc. By
reversing the measurement which gives Eve information about
whether a particular signal was detected (Eve’s vacuum
measurement), we show how to treat the general case with
a lossy channel and general, individual imperfections at
the source, combined with the flawed detector. The final
rate is dependent on three parameters which describe the
equipment, in addition to error and transmission rates. These
parameters are the basis dependence of the source and a
blinding parameter and a leakage parameter characterizing the
detector.

032337-6



SECURITY OF QUANTUM KEY DISTRIBUTION WITH . . . PHYSICAL REVIEW A 82, 032337 (2010)

[1] C. H. Bennett and G. Brassard, in Proceedings of IEEE
International Conference on Computers, Systems, and Signal
Processing (IEEE Press, New York, Bangalore, India, 1984),
p. 175.

[2] D. Mayers, in Proceedings of Crypto ’96, edited by N. Koblitz
(Springer, New York, 1996), Vol. 1109, p. 343.

[3] H. Inamori, N. Lütkenhaus, and D. Mayers, Eur. Phys. J. D 41,
599 (2007).

[4] M. Koashi and J. Preskill, Phys. Rev. Lett. 90, 057902
(2003).

[5] D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill,
Quantum Inf. Comput. 4, 325 (2004).

[6] C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, Quantum
Inf. Comput. 9, 131 (2009).

[7] L. Lydersen and J. Skaar, Quantum Inf. Comput. 10, 60 (2010).
[8] M. Hayashi, Phys. Rev. A 76, 012329 (2007).
[9] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[10] J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett. 95, 010503
(2005).

[11] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and
V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).

[12] V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313
(2006); 78, 019905 (2008).

[13] V. Makarov, New J. Phys. 11, 065003 (2009).
[14] M. Koashi, New J. Phys. 11, 045018 (2009); e-print

quant-ph/0505108v1.
[15] M. Koashi, e-print quant-ph/0609180.
[16] H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).
[17] H.-K. Lo and H. F. Chau, Science 283, 2050 (1999).
[18] N. J. Beaudry, T. Moroder, and N. Lütkenhaus, Phys. Rev. Lett.

101, 093601 (2008).
[19] T. Tsurumaru and K. Tamaki, Phys. Rev. A 78, 032302 (2008).
[20] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[21] M. Koashi and M. Ueda, Phys. Rev. Lett. 82, 2598 (1999).
[22] K. Tamaki, M. Koashi, and N. Imoto, Phys. Rev. Lett. 90, 167904

(2003).
[23] W. Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
[24] H.-K. Lo, X. F. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[25] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).

032337-7





Paper C

Hacking commercial quantum
cryptography systems by tailored
bright illumination

Published in Nature Photonics.

DOI: 10.1038/nphoton.2010.214

arXiv: 1008.4593 [quant-ph]

111

http://dx.doi.org/10.1038/nphoton.2010.214
http://arxiv.org/abs/1008.4593




Hacking commercial quantum cryptography

systems by tailored bright illumination
Lars Lydersen1,2*, Carlos Wiechers3,4,5, Christoffer Wittmann3,4, Dominique Elser3,4, Johannes Skaar1,2

and Vadim Makarov1

The peculiar properties of quantum mechanics allow two
remote parties to communicate a private, secret key, which is
protected from eavesdropping by the laws of physics1–4. So-
called quantum key distribution (QKD) implementations
always rely on detectors to measure the relevant quantum prop-
erty of single photons5. Here we demonstrate experimentally
that the detectors in two commercially available QKD
systems can be fully remote-controlled using specially tailored
bright illumination. This makes it possible to tracelessly acquire
the full secret key; we propose an eavesdropping apparatus
built from off-the-shelf components. The loophole is likely to
be present in most QKD systems using avalanche photodiodes
to detect single photons. We believe that our findings are
crucial for strengthening the security of practical QKD, by iden-
tifying and patching technological deficiencies.

The field of quantum key distribution has evolved rapidly in recent
decades. Today, quantum key distribution (QKD) implementations in
laboratories can generate key over fibre channels with lengths up to
250 km (ref. 6), and a few QKD systems are even commercially avail-
able, promising enhanced security for data communication.

In all proofs for the security of QKD, assumptions are made for
the devices involved. However, the components used for experimen-
tal realizations of QKD deviate from the models in the security
proofs. This has led to iterations in which security threats caused
by deviations have been discovered, and the loopholes have been
closed either by modification of the implementation, or more
general security proofs7–9. In other cases, information leaking to
the eavesdropper has been quantified10,11.

Attacks exploiting the most severe loopholes are usually exper-
imentally unfeasible with current technology. A prominent
example is the photon number splitting attack12, which requires
the eavesdropper Eve to perform a quantum non-demolition
measurement of the photon number sent by Alice. The attack is
still unfeasible, and has been nullified by improved QKD proto-
cols13,14. In contrast, a more implementation-friendly attack is the
time-shift attack15 based on detector efficiency mismatch16.
Experimentally however, this attack only gave a small infor-
mation-theoretical advantage for Eve when applied to a modified
version of a commercial QKD system17. In the attack, Eve captured
partial information about the key in 4% of her attempts, such that
she could improve her random (brute-force) search over all
possible keys.

In this Letter, we demonstrate how two commercial QKD
systems id3110 Clavis2 and QPN 5505, from the commercial
vendors ID Quantique and MagiQ Technologies, can be fully

cracked. We show experimentally that Eve can blind the gated detec-
tors in the QKD systems using bright illumination, thereby convert-
ing them into classical, linear detectors. The detectors are then fully
controlled by classical laser pulses superimposed over the bright
continuous-wave (c.w.) illumination. Remarkably, the detectors
exactly measure what is dictated by Eve; with matching measure-
ment bases Bob detects exactly the bit value sent by Eve, whereas
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Figure 1 | APD as a single-photon detector. a, In Geiger mode, where the

APD is reverse-biased above the breakdown voltage Vbr, an absorbed single

photon causes a large current IAPD through the APD. A detection signal

called a ‘click’ occurs when IAPD crosses the threshold Ith. Afterwards, VAPD
is lowered below Vbr to quench the avalanche, before returning to Geiger

mode. Below Vbr, in the linear mode, the current IAPD is proportional to the

incident optical power Popt. Then Ith becomes an optical power threshold Pth.

b, Commercial systems use gated detectors, with the APDs in Geiger mode

only when a photon is expected, to reduce false detections called ‘dark

counts’. In practice, the APD is biased just below Vbr, and periodical ≏3 V

voltage pulses create Geiger mode time regions, so-called ‘gates’. c, In both

systems, the bias high-voltage supply VHV has impedance Rbias (Rbias¼ 1 kV

in Clavis2 and 20 kV in QPN 5505) before Vbias is applied to the APD

at the point T1. Therefore, any current through Rbias reduces Vbias

(see Supplementary Section I for more details).
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*e-mail: lars.lydersen@iet.ntnu.no

LETTERS
PUBLISHED ONLINE: 29 AUGUST 2010 | DOI: 10.1038/NPHOTON.2010.214

NATURE PHOTONICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephotonics 1

© 2010 Macmillan Publishers Limited.  All rights reserved.  



with incompatible bases the bit is undetected by Bob. Even the
detectors’ dark counts are completely eliminated (but can be simu-
lated at will by Eve). Based on these experimental results we propose
in detail how Eve can attack the systems with off-the-shelf com-
ponents, obtaining a perfect copy of the raw key without leaving
any trace of her presence.

Today most QKD systems use avalanche photodiodes (APDs) to
detect single photons18. To detect single photons, APDs are oper-
ated in Geiger mode (Fig. 1). However, all APDs spend part of
the time biased under the breakdown voltage, in the linear mode.
During this period, the detector remains sensitive to bright light,
with a classical optical power threshold Pth. If Eve has access to
the APDs in the linear mode, she may eavesdrop on the QKD
system with an intercept-resend (faked-state19,20) attack as follows.
Eve uses a copy of Bob to detect the states from Alice in a
random basis. Eve resends her detection results, but instead of
sending pulses at the single photon level she sends bright trigger

pulses, with a peak power just above Pth. Bob will only have a detec-
tion event if his active basis choice coincides with Eve’s basis choice
(Fig. 2), otherwise no detector clicks. This causes half of the bits to
be lost, but in practice this is not a problem because transmittance
from the output of Alice to Bob’s detectors is much lower than 1/2.
Also Bob’s APDs rarely have a quantum efficiency over 50%, but the
trigger pulses always cause clicks. For a Bob using passive basis
choice, Eve launches the peak power at just above 2Pth , because
half of the power hits the conjugate basis detectors20. Then Bob’s
detector always clicks.

After the raw key exchange, Bob and Eve have identical bit values
and basis choices. Because Alice and Bob communicate openly
during sifting, error correction and privacy amplification5, Eve
simply listens to this classical communication and applies the
same operations as Bob to obtain the identical final key.

The attack is surprisingly general. All commercial QKD systems
and the vast majority of research systems use APD-based detectors,
which all operate their APDs part time in linear mode. Detectors
with passively and actively quenched APDs can also be kept in
linear mode through blinding20,21. The attack works equally well
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The superimposed Pnever,0¼ 647mW (detector 1: Pnever,1¼ 697mW) trigger

pulse never causes a detection event, whereas the Palways,0¼ 808mW

(Palways,1¼ 932mW) trigger pulse always causes a detection event. b, Click

thresholds versus the applied c.w. blinding illumination for the QPN 5505.

When the blinding power increases, Palways,0 diverges, perhaps because the

bias voltage is approaching the punch-through voltage of the APD (see

Supplementary Section II).
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on the Scarani–Acin–Ribordy–Gisin 2004 (SARG04)14 and decoy-
state BB8413 protocols as well as the normal BB84 protocol4. With
suitable modifications it applies to differential phase shift (DPS)22,
and given the right set of detector parameters to coherent one-
way (COW)23 protocols.

Note that the threshold Pth should be sufficiently well defined for
perfect eavesdropping. To be precise, let detector i always click from
a trigger pulse of optical peak power≥ Palways,i , and never click from
a trigger pulse of optical peak power≤ Pnever,i. The requirement for
Eve to be able to make any single detector click, while none of the
other detectors clicks, can be expressed in terms of the click
thresholds as

max
i

Palways,i

{ }

, 2 min
i

Pnever,i
{ }

( )

(1)

When eavesdropping, simply applying trigger pulses between the
gates populates carrier trap levels in the APD, thus raising the dark
count probability and causing a too high quantum bit error rate
(QBER). To avoid this, Bob’s detectors were blinded20,21. The detec-
tors are then insensitive to single photons and have no dark counts.
Outside the gates the APD is biased below the breakdown voltage,
and the current caused by illuminating the APD is increasing
with respect to the incident optical power. A current through the
APD will decrease the bias voltage over the APD due to the presence
of Rbias (Fig. 1c) and the internal resistance of the APD. Figure 3
shows the bias voltage drop at the point T1 in Clavis2 under
c.w. illumination.

The blinding is caused by the drop of Vbias such that the APD
never operates in the Geiger mode, but rather is a classical photo-
diode at all times. The voltages VHV,0/1 of the high-voltage supplies
do not change; the entire change of Vbias is due to the resistors
Rbias. Although shorting this resistor seems like an easy countermea-
sure, at least for Clavis2 this does not prevent blinding. With higher
illumination the electrical power dissipated in the APD generates
substantial heat. Raised APD temperature increases its breakdown
voltage by about 0.1 V 8 C21 while Vbias remains constant, which
also leads to blinding (at several times higher power level, 4–10 mW).

To demonstrate detector control in Clavis2, each detector was
blinded with 1.08 mW optical power with a 2.5-ns-long trigger pulse
superimposed slightly after the gate. Note that a shorter trigger pulse
can be timed inside the gate. Figure 4a shows the response of detector
0 in Clavis2 to trigger pulses at the click thresholds.

Similarly, for the QPN 5505, the trigger pulse was timed with its
leading edge about 5 ns after the gate. Figure 4b shows the click
thresholds for the detectors when blinded with 100–300 mW c.w.
blinding illumination. In this case, for blinding power levels of
100–250 mW, the detectors remain silent at a power level
of ≤0.61Palways,1.

For both systems the click thresholds fulfil equation (1),
so perfect eavesdropping is possible. Further, both systems
under investigation operate according to the plug-and-play

principle24, which allows an easily installable plug-and-play eaves-
dropper (Fig. 5).

A full eavesdropper based on bright-light detector control has
previously been implemented and tested under realistic conditions
on a 290-m experimental entanglement-based QKD system
(Gerhardt, I. et al., unpublished results). Because the attack is
clearly implementable, building a full eavesdropper for a commer-
cial cryptosystem would not further expose the problem. A better
use of effort is to concentrate on thoroughly closing the vulner-
ability. An optical power meter at Bob’s entrance with a classical
threshold seems like an adequate countermeasure to prevent blind-
ing. However, the power meter output should be included in a
security proof. Furthermore, the click threshold at the transition
between linear and Geiger mode may be very low, allowing practi-
cally non-detectable control pulses. How to design hack-proof
detectors is unclear to us at this stage, and all future detectors
clearly must be tested for side channels.

We believe that openly discovering and closing security loop-
holes is a necessary step towards practical and secure QKD, as it
has been for multiple security technologies in the past. For
example, RSA public key cryptography has been subject to extensive
scrutiny, which has led to the discovery of effective attacks based on
implementation loopholes25. In our view, quantum hacking is an
indication of the mature state of QKD rather than its insecurity.
Rather than demonstrating that practical QKD cannot become pro-
vably secure26, our findings clearly show the necessity of investi-
gating the practical security of QKD. Any large loopholes must be
eliminated, and remaining imperfections must be incorporated
into security proofs.

Both ID Quantique and MagiQ Technologies were notified about
the loophole before this publication. ID Quantique has implemented
countermeasures. According toMagiQ Technologies the system QPN
5505 has been discontinued; newer models of their system have not
been available for our testing.
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I. DETECTOR DESIGN AND OPERATION PARAMETERS

A. Clavis2

Fig. 1 shows an equivalent detector circuit diagram. The APD is biased just below its breakdown voltage by the
high voltage supply VHV,0 = −42.89 V, VHV,1 = −43.08 V. On top of this bias the APD is gated with 2.8 ns TTL
pulses every 200 ns from the buffer DD1 to create Geiger mode gates. The gates are applied as PECL signals from
the main controller board of Bob, and DD1 converts them to TTL levels (0 V and approximately +3 V). The anode
of the APD is AC-coupled to a fast comparator DA1 with the thresholds Vth,0 = 78 mV and Vth,1 = 82 mV.

DA1
MAX9601SY100H842

DD1

gate click
(PECL)

Output

(PECL)

Input
APD 1.1n

VHV,0/1

100n

R1
72

C1

C2150
150R2
R4

1 ==

R3
1k

T1

T2 T3

Vth,0/1

FIG. 1. Equivalent detector bias and comparator circuit in Clavis2 based on reverse engineering. Tap T1: analog tap of the
APD bias voltage (Vbias,0/1) with R3 = Rbias = 1kΩ in the Letter. T2: analog tap of the gates (Gates in Fig. 4a in the Letter).
T3: digital tap of the comparator output (Detector output in Fig. 4a in the Letter).

B. QPN 5505

Fig. 2 shows the bias and the gates applied to the APDs, as well as the output in front of the comparator. We have
not reverse-engineered the exact circuit performing the mixing of the gates and the bias. The signal shape at the APD
output however, indicates that the anode of the APD is AC-coupled to the comparator input, just as in Clavis2.

In the QKD control software, the user can set APD temperature, bias voltage, gate voltage and comparator
threshold. The QPN 5505 does not ship with any standard settings. In our experiment, we set the following values
which seemed to achieve a good QKD performance: the APD temperature to −30 ◦C, the bias voltage of detectors

∗ lars.lydersen@iet.ntnu.no
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FIG. 2. Schematics of the detection circuit in QPN 5505 based on reverse engineering. Tap T1: analog tap of the APD bias
voltage (Vbias,0/1). The APD as well as parts of the circuit are inside a hermetically sealed box (HSB). The bias voltage from
a high voltage supply is connected to the HSB through the resistor R1 = Rbias = 20 kΩ. For the settings which we used,
VHV,0 = 41.86V and VHV,1 = 41.41V as measured in the circuit. The gates were applied to the HSB with an amplitude about
10 times larger than the setting in the control software. We do not know how the gates are mixed with the bias because this is
done inside the HSB, which we decided not to open. The output of the HSB goes to an analog repeater and then a comparator
DA1 which converts the APD output into pulses of different length corresponding to click/no click event. In the experiment,
we simply used the QKD software to measure the detector count.

0 and 1 to 41.5 V and 40.5 V, the APD gate voltages to 2 V and the comparator thresholds to 0.4 V. During normal
QKD operation, gates are applied at a frequency of 607.5 kHz. With a transmission line consisting of a 10 m fibre
pathcord, the detectors had a count rate of about 4000 counts/s each. The dark count rates for detectors 0 and 1 were
about 120 counts/s and 210 counts/s. The QBER was about 5%, and the system steadily produced secret key.

II. DETECTOR CONTROL IN QPN 5505

Fig. 3 shows Vbias versus c.w. laser power. In the QPN 5505 in addition to the blinding two other effects were
observed. When the illumination was increased above about 550µW (at which Vbias was about 33.5 V), the detectors
restarted producing one click per gate. For illumination levels beyond 1 mW, Vbias did not drop significantly. We
attribute the latter effect to the bias voltage reaching the punch-through voltage of the APD, below which its sensitivity
to light decreases several orders of magnitude [1].
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III. MEASUREMENT SETUPS

A. Clavis2

Fig. 4 shows the measurement setup used to control the detectors in Clavis2. The trigger signal is tapped directly
from the PECL gate signal (before DD1 in Fig. 1).
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FIG. 4. The setup used in the Clavis2 experiment. A single laser diode produces both c.w. blinding illumination and trigger
pulses superimposed to it, by applying DC and pulsed voltage from different channels of the digital delay generator. Since the
laser is already biased above threshold when the voltage pulse is applied, the width of the emitted optical trigger pulse remains
nearly constant while its peak power is being varied.

B. QPN 5505

Fig. 5 shows the measurement setup used to control the detectors in the QPN 5505. A clock signal from the main
controller board of Bob was used as a trigger signal.
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FIG. 5. The setup used in the QPN 5505 experiment. VOA, variable optical attenuator.

IV. PLUG-AND-PLAY EVE

Plug-and-play QKD systems [2–4] have the feature of automatically compensating any polarization drift in the
fibre as well as phase drift in Bob’s interferometer, and can as such be installed on any existing fibre line. For a full
discussion of the plug-and-play architecture, see Ref [5].

The plug-and-play nature of both commercial systems we tested can be exploited to design a plug-and-play eaves-
dropper, see Fig. 6. The optical amplifier will have spontaneous emission which in turn causes noise in both phase
and polarization of the trigger pulses. The click probability thresholds are however not at the limit of equation (1) in
the Letter, so some noise can be tolerated. In the configuration shown in Fig. 6, the c.w. blinding illumination will
enter a random arm in Bob’s interferometer. Since the loss differs in the two arms, this might cause fluctuations in
the c.w. blinding illumination reaching Bob’s APDs. As the trigger pulse power thresholds are relatively independent
of the c.w. blinding illumination (see Fig. 4b in the Letter) this might not pose a problem for Eve. A possible solution
is that Eve uses two orthogonally polarized blinding lasers. This will keep the amount of illumination in each arm of
Bob’s interferometer stable regardless of the polarization transformation in the line Eve–Bob.

The proposed eavesdropping scheme works during qubit transmission between Alice and Bob (i.e., the key-producing
part of the hardware activity). In addition to the qubit transmission, Alice and Bob sometimes perform service
procedures. E.g., a calibration routine to fine-tune gate timing of Bob’s detectors is performed in both systems we
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FIG. 6. Schematics of the proposed plug-and-play Eve: FM, Faraday mirror; PMx, phase modulator; IM, intensity modulator;
D, classical detector; VOA, variable optical attenuator; C, fibre coupler; PBS, polarizing beam splitter; LD, laser diode; APD,
avalanche photo diode; OAMP, optical amplifier. Eve consists of a copy of Bob’s apparatus, and a modified version of Alice’s
apparatus where the variable optical attenuator is replaced with an optical amplifier to amplify the pulses from Bob to the
appropriate trigger pulse power. Also a c.w. blinding laser is coupled into the line to keep Bob blind. Eve uses the same
random basis choice for her phase modulators, PMA� and PMB� . Her detected bit value is used to set the bit value for PMA� .
When Eve has a no detection event, IM prevents the pulse from being returned to Bob.

studied. Eve would have to tackle such service procedures in a non-obtrusive manner, depending on the particular
QKD system model she eavesdrops on.

[1] Epitaxx EPM 239 AA, EPM 239 BA low noise avalanche photodiode module for OTDRs. Data sheet (Epitaxx, Inc., 1999).
[2] Muller, A. et al. “Plug and play” systems for quantum cryptography. Appl. Phys. Lett. 70, 793–795 (1997).
[3] Zbinden, H. et al. Interferometry with Faraday mirrors for quantum cryptography. Electron. Lett. 33, 586–588 (1997).
[4] Ribordy, G., Gautier, J.-D., Gisin, N., Guinnard, O. & Zbinden, H. Automated ‘plug & play’ quantum key distribution.

Electron. Lett. 34, 2116–2117 (1998).
[5] Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).



Paper D

Avoiding the blinding attack in
QKD

Published in Nature Photonics.

DOI: 10.1038/nphoton.2010.278

arXiv: 1012.0476 [quant-ph]

121

http://dx.doi.org/10.1038/nphoton.2010.278
http://arxiv.org/abs/1012.0476




800 NATURE PHOTONICS | VOL 4 | DECEMBER 2010 | www.nature.com/naturephotonics

correspondence

To the Editor — Although the protocols 
used for quantum key distribution (QKD) 
have been proven to be unconditionally 
secret, the security of QKD hardware 
depends critically on the detail of its 
implementation. Studies of quantum 
hacking play an important role in exposing 
potential weaknesses and thus promoting 
the design of more secure systems. In their 
recent paper1, Lydersen et al. presented 
an attack on QKD systems that would 
allegedly allow an eavesdropper to gain 
full information about the secret key. he 
authors state that “the loophole is likely 
to be present in most QKD systems using 
avalanche photodiodes to detect single 
photons”. Here, we show the attack will 
be inefective on most single-photon 
avalanche photodiodes (APDs), and 
certainly inefective on any detectors 
that are operated correctly. he attack 
is only successful if a redundant resistor 
is included in series with the APD, or 
if the detector discrimination levels are 
set inappropriately.

Lydersen et al. target the InGaAs/InP 
APDs oten used to detect single photons. 
Figure 1a shows a typical biasing circuit 
for gated Geiger-mode APDs, unusual only 
in the inclusion of a redundant biasing 
resistor (Rbias) to simulate the experiment 
of Lydersen et al. he APD is pulse‐gated 
to raise its bias voltage (Vg) above the 
breakdown voltage (Vb). When biased 
above breakdown (Vg > Vb), the device 
can multiply a single‐photon-induced 
charge into a macroscopic current through 
repeated impact ionizatifon. A detection 
event is registered if the voltage drop 
across the sensing resistor (Rs) exceeds the 
discrimination voltage level (L). It is a good 
(and common) practice to set L as low as 
possible2–4, at a level determined in gated 
mode by the capacitive charging signal (L0 
in Fig. 1a, inset).

Lydersen et al. send strong continuous-
wave (CW) illumination along the ibre 
to generate a photocurrent‐induced 
voltage drop across the bias resistor Rbias, 
thereby reducing the APD bias to below 
the breakdown voltage (that is, Vg < Vb) 
and rendering the detector blind to single 
photons5. As demonstrated in Fig. 1b, 
we ind the APD is indeed blind (that 
is, the count probability falls to zero) at 
threshold CW powers of 22 nW, 350 nW 
and 2.4 μW for Rbias values of 680 kΩ, 

330 kΩ and 100 kΩ, respectively. he count 
probability recovers to one count per gate 
under stronger illumination at around 
20 ȝW, almost independent of the value 
of Rbias. he detector triggers under strong 
illumination (>20 ȝW) due to modulation 
of the photocurrent gain by the applied 
bias pulses (Fig. 1a, inset). As described 
below, this gain modulation negates the 
detector blinding attack, provided that the 
discrimination level is set appropriately.

Notice in Fig. 1b that the range of CW 
input powers over which the detector is 
blind to single photons narrows as Rbias 
decreases. Indeed, for a suiciently small 
Rbias, the detector cannot be blinded. his is 
exactly what we observe for the usual case 
of Rbias = 0 (Fig. 1b). We stress that although 
a biasing resistor is sometimes used for 
quenching avalanches in APDs operated in 
d.c. mode, it is redundant for gated Geiger-
mode APDs and not common. hus, most 
APDs used in QKD hardware will not be 

sensitive to the detector blinding attack6, 
contrary to the suggestions of Lydersen et al.

For inite-biasing resistors, as is the 
case for the QPN5505 and Clavis2 QKD 
systems studied by Lydersen et al., the 
ability to blind the detector with CW 
input light is very sensitive to the detector 
discrimination level. his is illustrated 
by Fig. 1c, which shows the CW power 
dependence of the count probability for 
Rbias = 1 kΩ (the value appropriate for 
Clavis2) for two diferent discrimination 
voltage levels. Notice that if L is set just 
above the capacitive signal (that is, L = L0), 
the detector cannot be blinded. However, if 
the discriminator is set to an inappropriate 
level (L = 2L0), the detector is blinded 
at 260 ȝW, close to the value reported 
by Lydersen et al. hese authors later 
reported7 setting a discrimination level of 
approximately 80 mV for Clavis2, which 
is more than twice the value needed to 
reject the capacitive signal of 35 mV. his 

Avoiding the blinding attack in QKD

Figure 1 | InGaAs APD under CW illumination. The APD is thermo-electrically cooled to −30 °C and 

driven by voltage pulses of 3.5 ns, 4 V and 2 MHz. The excess bias is set to 2.5 V by the d.c. bias (VHV) 

in the single-photon counting regime. A CW laser of wavelength 1.55 ǋm is used for illumination. a, A 

schematic for gated-mode operation and two APD output waveforms that trigger a photon click. b,c, Count 

probability against incident optical power for a biasing resistor (Rbias) of varying impedance (b) and for two 

difering discrimination levels, L0 and 2L0  (c).
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suggests that setting appropriate detector 
discrimination levels would be suicient to 
prevent the detector blinding attack on the 
QPN5505 and Clavis2 QKD systems.

It is worth pointing out that gain 
modulation of the photocurrent will also be 
suicient to prevent the thermal attack7 on 
APDs. his attack uses high CW powers to 
generate a photocurrent that heats the APD 
and thereby increases Vb. Considering the 
required optical power (>1 mW)7, a slight 
modulation in gain is suicient for persistent 
counting. Indeed we have conirmed the 
absence of any thermal blinding efect with 
an optical excitation of 17.8 mW, which 
corresponds to a heating power of 500 mW 
in the APD.

Finally, it is important to emphasize that 
any attack with strong illumination will 
result in a large photocurrent. Monitoring 
the photocurrent for anomalously high 
values is a straightforward way of detecting 
any attack of this type. his is applicable 
to all types of APDs, including those that 
are ungated5 or used in high‐speed gated 
mode3,4, and can therefore be used to 
reveal bright illumination attacks on QKD 
systems using APDs. ❐
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Lydersen et al. reply: We are glad that 
our results have improved awareness and 
stimulated discussions concerning the 
imperfections of detectors, particularly 
among the leading research groups that 
use APDs in QKD systems. Yuan et al. 
propose a method to avoid the blinding of 
gated APD-based detectors, such as those 
used in the two commercial QKD systems 
addressed in our recent publication1. Our 
experimental data from Clavis2 indicate 
that the countermeasure suggested by 
Yuan et al. will make it more diicult to 
blind gated detectors.

However, for gated detectors, avoiding 
blinding is insuicient to avoid our attack. 
Gated detectors operate in linear mode 
between the gates, and the trigger pulse 
can therefore be applied directly ater 
the gate (discarding these clicks based 
on arrival times seems to be impractical 
because of detector jitter). We remarked 
that this causes aterpulses1, but in fact 
the ater-gate attack can fully compromise 
the security for a wide range of system 
parameters2. Even outside this range, one 
must quantify in a proof-of-security how 
well Eve may perform. Removing the bias 
resistor and lowering the comparator 
threshold does not avoid exploiting 
the linear mode between gates. In fact, 
lowering the comparator threshold reduces 
the required trigger pulse power, and thus 
probably improves the ater-gate attack by 
reducing aterpulsing.

Furthermore, it seems that the 
detectors can still be blinded even with the 
changes proposed by Yuan et al.; simply 
removing the bias resistor has turned out 
to be insuicient. In our recent paper3, we 
removed the bias resistor from Clavis2 
but were still able to blind the detectors in 
several ways. Yuan et al. did not observe 
thermal blinding from continuous-wave 

illumination. his may be due to the lower 
comparator threshold and/or insuicient 
heating, as they illuminate only one APD 
instead of two, while operating at a higher 
temperature, which efectively increases the 
cooler capacity.

Even if the bias resistor is removed 
and the discrimination level is set just 
above the capacitive charging signal, 
the detectors seem to be vulnerable to 
sinkhole blinding3. In sinkhole blinding, 
the APD is illuminated between the gates. 
With a suitable duty cycle of the blinding 
illumination, it should be straightforward 
to blind the detector while keeping the 
comparator input well below the amplitude 
of the capacitive signal.

Monitoring the photocurrent of the 
APDs is like using a power meter at Bob’s 
entrance, which we discussed in our 
original paper1. Furthermore, this will not 
reveal the ater-gate attack.

It seems that the countermeasure 
proposed by Yuan et al. does not prevent 
our general attack of tailored bright 
illumination. So far, we have been able 
to blind and control every APD-based 
detector that we have looked at thoroughly 
(albeit with diferent techniques), including 
three diferent passively quenched 
detectors4, one actively quenched detector5 
and two diferent gated detectors1–3.

In our opinion, this discussion shows 
how important it is to close the QKD 
security loophole in a thorough and provable 
way. We doubt that this can be achieved 
eiciently in small increments of intuitive 
patches, which will cause rapid iterations 
and so force manufacturers to update their 
QKD systems frequently. We are conident 
that APD-based single-photon detectors 
can be, and will be, made secure by a proper 
implementation of QKD combined with a 
suiciently general security proof.

As a inal remark, we want to emphasize 
that in our experiments1–3 the QKD systems 
were treated as black boxes, just as they 
would be for Eve. We reverse-engineered 
the detector circuitries (realistically, Eve 
can buy a copy of Bob and do the same) 
and non-intrusively recorded the detector 
response during our experiments. Clavis2 
shipped with its factory settings ready 
for QKD, including the discrimination 
level, which we used for our experiments. 
As pointed out in our Supplementary 
Information1, QPN 5505 did not ship with 
factory settings, but we followed the manual 
and used the settings that gave us the best 
QKD performance. ❐
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∗lars.lydersen@iet.ntnu.no

Abstract: It has previously been shown that the gated detectors of
two commercially available quantum key distribution (QKD) systems are
blindable and controllable by an eavesdropper using continuous-wave
illumination and short bright trigger pulses, manipulating voltages in
the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack
eavesdropping the full raw and secret key without increasing the quantum
bit error rate (QBER). Here we show how thermal effects in detectors
under bright illumination can lead to the same outcome. We demonstrate
that the detectors in a commercial QKD system Clavis2 can be blinded
by heating the avalanche photo diodes (APDs) using bright illumination,
so-called thermal blinding. Further, the detectors can be triggered using
short bright pulses once they are blind. For systems with pauses between
packet transmission such as the plug-and-play systems, thermal inertia
enables Eve to apply the bright blinding illumination before eavesdropping,
making her more difficult to catch.

© 2010 Optical Society of America

OCIS codes: (040.1345) Avalanche photodiodes (APDs); (040.5570) Quantum detectors;
(270.5568) Quantum cryptography; (270.5570) Quantum detectors.
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1. Introduction

In theory quantum mechanics allows two parties, Alice and Bob, to grow a private, secret key,
even if the eavesdropper Eve can do anything permitted by the laws of nature [1–4]. The field of
quantum key distribution (QKD) has evolved rapidly in the last two decades, with transmission
distance increasing from a table top demonstration to over 250km in the laboratory [5], and
commercial QKD systems available from several vendors [6].

However the components used for the experimental realizations of QKD have imperfections.
As for any security technology, it is crucial to scrutinize the implementations in order to obtain
a high level of practical security. The discovery of security loopholes does not prove that QKD
is insecure, but rather that principles of QKD are not sufficiently well implemented.

Numerous imperfections have been addressed in security proofs [7–12]. For some loopholes
it took several years from their discovery until they were covered by security proofs, for instance
the Trojan-horse [13, 14] loophole and detector efficiency mismatch [15–17]. The latter was
exploited in the time-shift attack [18] on a commercial QKD system [19]. Other loopholes
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include a variety of side-channels [20–23].
Common to the loopholes mentioned so far is that the corresponding attacks are not imple-

mentable in practice, leave Eve with a probabilistic advantage, or introduce a QBER close to the
tolerable limit. For instance, the implementation of the time-shift attack [19] gave Eve a prob-
abilistic, information-theoretic advantage. With probability 0.04 the unconditional security is
broken; however, extra information is needed and a nontrivial computational task remains to ob-
tain the secret key. In the practical phase-remapping attack [23], Eve caused 19.7% QBER [24]
compromising the rarely used two-way post-processing protocol which produces secure key at
QBER up to 20% [25, 26].

There is however one class of attacks which stands out in terms of implementability, Eve’s
information and QBER: The blinding attacks [27–29] are fully implementable with current
technology, and give Eve the whole raw key while causing zero additional QBER. The latter
is essential as the QBER is measured to reveal Eve’s presence. In these attacks, the APDs are
tricked to exit the single-photon sensitive Geiger mode, and are so-called blind. Eve uses a
copy of Bob’s apparatus to detect Alice’s signals, but resends bright trigger pulses instead of
single photons, as in the after-gate attack [30]. When the detectors are blind, Bob will only
detect the bright trigger pulses if he uses the same basis as Eve. Otherwise his detectors remain
silent. Hence Eve gets a full copy of the raw key while causing no additional QBER. Both
passively quenched detectors [27], actively quenched detectors [28] and the gated detectors of
two commercially available QKD systems [29] have been shown to be vulnerable to blinding.
In the case of the passively-quenched detectors, this loophole has been exploited in the first full-
scale implementation of an eavesdropper [31], which was inserted in the middle of the 290m
transmission line in an experimental entanglement-based QKD system [32, 33], and recovered
100% of the raw key.

Previously the gated detectors in the commercially available system Clavis2 from manufac-
turer ID Quantique were subject to continuous-wave (CW) blinding [29]. The blinding illumi-
nation caused the bias voltage at the APDs to drop due to the presence of DC impedance of the
bias voltage supply, and therefore the APDs were never in Geiger mode. Shortly after the result
was published, Yuan et al. proposed that removing the bias voltage impedance or lowering the
comparator threshold in the detectors would hinder blinding in gated detectors [34]. However,
in this paper we show how the same detectors, regardless of the impedance of the bias volt-
age supply, can be blinded by heating the APD, so-called thermal blinding. Furthermore we
show how the AC-coupling of the detectors allows a blinding technique which may blind the
detectors even if the comparator threshold is lowered. We show that thermal blinding is more
sophisticated form of attack than previously reported CW-blinding [29] because the APD can
be heated well in advance of the detection times, and is as such harder to catch. Especially for
Clavis2, all the detector parameters such as temperature of the cold plate, bias voltage and APD
current indicate single photon sensitivity while the detectors are in fact blind.

In this paper we first briefly review how APDs in the linear mode can be exploited to eaves-
drop on QKD systems (Section 2). Then the detector design in Clavis2 is discussed (Section 3)
before we show how it is possible to thermally blind and trigger the detectors (Section 4).
Finally we briefly discuss countermeasures in Section 5 and conclude in Section 6.

2. Eavesdropping exploiting APDs in linear mode

In this section we briefly review how APDs in the linear mode can be exploited to eavesdrop
on QKD systems [28, 29].

In Geiger mode operation, an electron-hole pair produced by an absorbed single photon is
amplified to a large current in the APD, which exceeds a current comparator threshold and
reveals the photon’s presence. This is referred to as a click [35].
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Fig. 1. The last beam splitter (BS) as well as the detectors in a phase-encoded QKD system.
I0 and I1 is the current running through APD 0/1, and Ith is the comparator threshold current
above which the detector registers a click. Here we assume that the APDs are in the linear
mode, and that Eve sends a bright pulse slightly above the optical power thresholds. a) Eve
and Bob have selected matching bases. Therefore the full intensity in the pulse from Eve
hits detector 0. The current caused by Eve’s pulse crosses the threshold current and causes
a click. b) Eve and Bob have selected opposite bases. Therefore half the intensity of Eve’s
pulse hits each detector (corresponding to 50% detection probability in either detector for
single photons). This causes no click as the current is below the threshold for each detector.

In the linear mode however, when an APD is reverse-biased at a constant voltage below the
breakdown voltage [36], the current through the APD is proportional to the incident optical
power. Usually the APD is placed in a resistive network, and also has an internal resistance.
Hence, the current through the APD lowers the bias voltage, and the current through the APD
is monotonically increasing with the incident optical power. In this regime, the comparator
current threshold translates to a classical optical power threshold [29].

If APDs are used as detectors in a QKD system, and they are optically accessible to Eve
when biased under the breakdown voltage, Eve may eavesdrop on the QKD system with an
intercept-resend (faked-state [37]) attack. Eve uses a copy of Bob to detect the qubits from
Alice in a random basis. Eve resends her detection results, but instead of sending single photons
she sends bright pulses, just above the classical optical power threshold. Bob will only have a
detection event if his basis choice coincides with Eve’s basis choice (see Fig. 1), otherwise no
detector clicks.

After the raw key exchange, Bob and Eve are identical both in bit values and basis choices.
Since Eve uses a copy of Bob’s detectors, Bob’s photon-number detection statistics is equal
with or without Eve. Therefore the attack works equally well on the BB84 protocol [1], the
Scarani-Acin-Ribordy-Gisin 2004 (SARG04) [38] and decoy-state BB84 protocols [39–41]. In
addition to attacking the quantum channel, Eve listens on the classical channel between Alice
and Bob. Afterwards Eve performs the same classical post-processing as Bob to obtain the
identical secret key.

Note that the classical optical power threshold has to be sufficiently well defined for success-
ful perfect eavesdropping. To be precise, let an optical power of P100%,i or greater always cause
a click when applied to detector i. Likewise, let an optical power of P0%,i or less never cause a
click when applied to detector i. The sufficient condition for Eve to be able to make any single
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Fig. 2. Equivalent detector bias and comparator circuit. Taps T1-T3 are analog taps of the
APD gates (Vgate,0/1), the APD bias (Vbias,0/1) and the comparator input (Vcomp,0/1). The
digital tap T4 of the detector output (Vclick,0/1) has been converted to logic levels in all
oscillograms. For the experiments presented in section 4, the resistor R3 has been shorted.

detector click while none of the other detectors click, can be expressed as

max
i

{P100%,i} < 2

(
min

i
{P0%,i}

)
. (1)

Note that since Alice and Bob openly report the failure due to too high QBER, it is unneces-
sary for Eve to know the classical optical thresholds P0%,i,P100%,i beforehand. In particular, she
could start with a high optical power, lowering it each time the protocol fails until it succeeds.
Then she knows that she has found the proper trigger pulse power. Note that to avoid causing
the protocol to fail, she could probe just a part of the transmission [37].

3. Detector design

3.1. Detector circuit

Figure 2 shows an equivalent detector bias and comparator circuit diagram for the detectors in
Clavis2, based on reverse engineering. The system ships with factory settings for the detectors,
ready for QKD, which we used. The APD is biased just above its breakdown voltage by the
high voltage supply VHV,0 = −42.89V, VHV,1 = −43.08V. On top of this bias the APD is gated
with 2.8ns TTL pulses every 200ns from DD1 to create Geiger mode gates. The gates are
applied as PECL signals from the mainboard, and the buffer converts them to TTL levels, 0V
and approximately 3V. The anode of the APD is AC-coupled to a fast comparator DA1 with
the thresholds Vth,0 = 78mV and Vth,1 = 82mV.

The normal operation of the detector circuit can be seen in Fig. 3. A number of techniques
have been developed for compensating the capacitive pulse through APDs in the absence of an
avalanche [42–45], but this particular detector simply sets the comparator thresholds above the
amplitude of the capacitive pulse.

As a side note, applying CW illumination to the APD allowed us to measure the timing of
the quantum efficiency curve within the gate quite precisely, see Appendix B.

3.2. Detector cooling

To reduce the probability of dark counts, APDs are usually cooled to a low temperature. The
two APDs in this QKD system are cooled together by one 4-stage thermoelectric cooler (TEC)
(Osterm PE4-115-14-15 [46]). The system software reports the temperature measured by a
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Fig. 3. An example of electrical signals during two gates in detector 1 without any illumina-
tion. In the first gate thermal fluctuations or trapped carriers have caused an avalanche, and
a click at the comparator output (dark count). A typical amplitude of the avalanche peak is
200mV for detector 0 and 300mV for detector 1. Normally the system removes 50 gates
after a detection event, but for this oscillogram this feature has been disabled. In the second
gate there is no detection event. When no current runs through the APD, it is equivalent to
a capacitor, and thus approximately the derivative of the gate pulse shape propagates to the
comparator input, with peak positive amplitude ≈ 35mV.

thermistor mounted on the cold side of the top stage (cold plate), and close to where the APDs
are mounted. Note that the cold plate temperature is not always the same as the APD chip
temperature, as there is actually a quite substantial thermal resistance between the two. This
will become an important point in section 4.2. The hot side of the TEC is mounted on a large
heatsink with a fan, such that it stays at approximately room temperature.

The temperature of the cold plate is maintained at a pre-set value by a closed-loop controller
that adjusts the TEC current. When the system is switched on, the cold plate (and thus the
APDs) is first cooled to the target temperature, −50◦C. The system will not start operation un-
less the cold plate settles at a temperature below −49.8◦C. After this the temperature controller
always tries to maintain the target temperature. However, there seems to be no alarm: QKD
proceeds even if the cold plate temperature is several tens of degrees different from the target
temperature.

4. Blinding and control

Blinding is achieved when the system is insensitive to single photons. This can be achieved
by ensuring that the APD bias voltage is below the breakdown voltage, or by lowering the
voltage in front of the comparator such that the avalanche current does not cross the comparator
threshold. The detectors are controllable if they are accessible to Eve in the linear mode with a
sufficiently well defined classical optical power click threshold, as in Eq. (1).

We have previously reported that blinding Clavis2 can be achieved by CW illumination due
to the bias voltage supply impedance R3 = 1kΩ, which makes the bias voltage drop to a level
where the APD is never in Geiger mode [29], even inside the gate.

One fast and easy countermeasure could be to use a low-impedance bias voltage source in
the detectors. Therefore, in this paper we consider a modified version of the detectors with
R3 shorted (see Fig. 2). We present three different blinding techniques which may be used
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Fig. 4. Calculated heat dissipation (based on measured APD current and voltage) versus
the optical illumination for each of the two detectors.

against detectors with a low-impedance bias voltage source, and show that the detectors can
be controlled by trigger pulses in the blind state. The technique in section 4.1 clearly works
against high-impedance biased detectors as well as against low-impedance biased detectors
since it has been demonstrated [29]. The difference is that with a low-impedance bias voltage
source, the blinding originates from thermal effects instead of bias voltage drop. The technique
in section 4.2 has been used on low-impedance biased detectors, but we see no reason why it
should not work similarly well against the unmodified high-impedance biased detectors. The
technique in section 4.3 has been used on both high- and low-impedance biased detectors, but
we only present the results for the low-impedance biased detectors in this paper.

4.1. Thermal CW-blinding

It turns out that it is possible to blind also low-impedance biased detectors (R3 = 0) by CW
illumination. When an APD is illuminated, the power dissipated in the APD is transformed
to heat, which may increase the APD temperature. The breakdown voltage is temperature de-
pendent: increasing the temperature increases the breakdown voltage [47, 48]. Since the bias
voltage is constant, this makes the APD leave the Geiger mode. Two effects contribute to the
power dissipation: electrical heating (VAPD · IAPD) and the small contribution by the absorption
of the optical power. For the heat dissipation calculations, we simply assume that all the optical
power is absorbed and transformed to heat. Figure 4 shows how the heat dissipation increases
with the optical illumination.

When the sum of the heat dissipations of the two detectors is approximately 300mW, the
cooling system is running at its maximum capacity with a TEC current of about ITEC = 2.37A
(the air temperature at the heatsink fan intake at this time was 23.6◦C). When the optical il-
lumination is increased beyond this point, the cold plate (and thus APD) temperature starts to
increase. Figure 5 shows how the temperature of the cold plate increases with the total amount
of heat dissipated in the APDs. When the optical illumination, and thus the load is increased
beyond the maximum capacity of the TEC, the cold plate temperature increases approximately
linearly with the heat dissipated by the APD. While not in the specifications of this specific
TEC [46], other data sheets of similar TECs [49] show that the temperature difference between
the hot and cold plate decreases linearly with respect to the load, given a constant TEC current.

When the temperature of the APDs increases, the breakdown voltage also increases with the
coefficient of about 0.1V/K [50]. In this experiment we illuminated both detectors simultane-
ously, to get sufficient temperature increase without risking a permanent damage to the APDs.
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Fig. 6. Click probability versus power of CW illumination applied to both detectors simul-
taneously.

We used a fibre-optic coupler (see appendix A for the experimental setup) to illuminate both de-
tectors, with 46.75%/53.25% of the optical power going to detector 0/1. This is approximately
equal to the measured splitting ratio for the beam splitter in front of the detectors in the system,
when illuminated through the short arm of the interferometer [51–53].

Figure 6 shows the click probability versus the CW illumination of the two detectors. The
click probability drops below the normal dark count probability (about 10−4), before it becomes
exactly zero when the illumination exceeds 8.8mW and 10mW at the detectors. In the exper-
iment the blinding caused clicks for several minutes before the APDs were properly heated.
However, the blinding only needs to be turned on once, afterwards Eve remains undetected.

After the cold plate has been heated by APD illumination, it takes several tens of seconds
before it cools to the target temperature of −50◦C. Therefore, the detectors stay blind for some
time after the CW blinding illumination is turned off. Detectors 0 and 1 regain dark counts when
the cold plate (and thus the APDs) becomes colder than −39.8◦C and −40.1◦C, respectively.

To verify that the detectors could be controlled, the detectors were blinded with 9.5mW at
detector 0 and 10.7mW at detector 1, and controlled by superimposing a 3ns long laser pulse
slightly after the gate. The click probability thresholds are listed in Table 1. The thresholds
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Table 1. Control pulse peak power at 0 % and 100 % click probability thresholds, in CW
thermal blinding mode

Detector
Click probabilities

0 % 100 %
0 1.12mW 1.31mW
1 1.71mW 2.02mW

satisfy Eq. (1), and thus the eavesdropping method described in Section 2 should be possible
when the detectors are thermally blinded by CW illumination.

After observing thermal blinding in this experiment, we realized that this could be the reason
why the PerkinElmer SPCM-AQR actively-quenched detector module remained blind at bright
pulse frequencies above 400kHz, despite no substantial bias voltage drop [28]. Therefore we
did more precise measurements which confirm that PerkinElmer SPCM-AQR can be thermally
blinded [54].

4.2. Thermal blinding of frames

As this QKD system is of plug-and-play type, it sends the qubits in packets called frames
to avoid Rayleigh back-scattered photons to arrive during the gates and increase the QBER
[51, 55]. For our experiment we used 1072 qubits per frame [56]. With a 200ns bit period this
makes the frame length 214.4µs. The break in between the frames varies with the fibre length
between Alice and Bob, but is always longer than the frame itself. In our experiment we simply
used a 250µs frame break, which makes a total frame + break period of 464.4µs.

It turns out that the APD chip and the inner parts immediately touching it (not the APD pack-
age and not the cold plate) act as a thermal reservoir on the frame period time scale. Therefore
bright illumination between the frames heats the APD sufficiently that it stays blind throughout
the whole frame. Based on the optical power where the frames went blind, and the average
current through the APDs, the thermal resistance between each APD chip and the cold plate is
estimated to be at least 190K/W.

To heat the APDs we used 225µs long pulses timed in between the frames and fired at both
APDs simultaneously. The whole frame went blind at approximately 1.5mW and 1.7mW pulse
power at detector 0 and 1 respectively. The oscillograms in Fig. 7 show the electrical and optical
signals in detector 1 when frames of 1072 gates are thermally blinded by the 225µs long pulses
with 3.5mW in-pulse power at detector 0, and 4mW in-pulse power at detector 1. While the
system was blind, the cold plate temperature reading was −49.5◦C, and the TEC was running
well below its maximum capacity at ITEC = 2.006A. Therefore it seems that even though this
system does not check the cold plate temperature after the initial check, further checks of the
cold plate temperature would probably not reveal that the detectors are in fact blind.

To verify that the detectors could be controlled, we checked the response to a 4ns long
control pulse timed slightly after the gate of one of the first bits of the frame, and the last bit of
the frame. The detection probability thresholds for the second [57] and the last bit are given in
Tables 2 and 3. Figure 8 shows oscillograms from detector 1 when it is blinded and controlled
in the second bit of the frame.
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Fig. 7. Thermal blinding of frames. The oscillograms show electrical and optical signals
when frames of 1072 gates in detector 1 are thermally blinded by a 225µs blinding pulse,
with 3.5mW pulse power at detector 0, and 4mW pulse power at detector 1. The blinding
pulse causes a detection event outside the frame, where the system probably does not reg-
ister clicks (If the click is registered, it could easily be avoided by increasing the power of
the blinding pulse gradually, such that the comparator input AC-coupling keeps the voltage
below the comparator threshold).
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Fig. 8. Detector control during thermal blinding of frames. The oscillograms show electrical
and optical signals when frames of 1072 gates in detector 1 are thermally blinded by a
225µs blinding pulse, with 3.5mW pulse power at detector 0, and 4mW pulse power at
detector 1, and the detector is controlled by a 4ns long control pulse timed slightly after
the second gate in the frame. In the upper and lower left sets of oscillograms, the 580µW
control pulse never causes any click. In the lower right set, the control pulse is applied after
the same gate in the frame, but now its increased 747µW peak power always causes a click.
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Table 2. Control pulse peak power at 0 % and 100 % click probability thresholds for the
second bit in the frame, when the frame is thermally blinded

Detector
Click probabilities

0 % 100 %
0 401µW 533µW
1 580µW 747µW

Table 3. Control pulse peak power at 0 % and 100 % click probability thresholds for the
last bit in the frame, when the frame is thermally blinded

Detector
Click probabilities

0 % 100 %
0 305µW 420µW
1 340µW 532µW

The click probability thresholds in Tables 2 and 3 each satisfy Eq. (1) individually. However,
P0%,0 in the last bit of the frame is less than 1/2 of P100%,1 in the second bit of the frame. This
means that the control pulse power would have to be decreased throughout the frame. Since
the second and the last bit of the frame can be controlled, it is plausible that the eavesdropping
method described in Section 2 could be applied to any bit of the frame.

What is remarkable about this blinding method is that due to the low thermal conductivity
between the APD chip and the cold plate, as well as the thermal inertia of the nearby parts, the
cold plate thermistor reports a value very close to the normal value. Therefore monitoring the
cold plate temperature would not suffice to prevent thermal blinding.

In fact the system needs not to be operating in frames for such blinding to take place: Eve
may heat the detectors accepting a 50% QBER for some sessions, eavesdropping on the next
sessions.

4.3. Sinkhole blinding

It is natural to ask whether the framed blinding technique can be applied at the single gate
level, i.e. what happens if bright illumination is applied between adjacent gates? It turns out
that this also leads to blinding, but not primarily due to thermal effects. Since the comparator
input is AC-coupled (see Fig. 2), the signal at the input of the comparator has the same area
over and under 0V level when averaged over time much longer than R4·C1 = 165ns. Thus by
sending long bright pulses between the gates and no illumination near the gate, it is possible
to superimpose a negative-voltage pulse at the comparator input at the gate time. We call this
negative pulse a sinkhole. An avalanche that occurs within it can have a normal amplitude yet
remain below the comparator threshold level.

Using a 140ns long pulse beginning about 25ns after the gate, detector 0 becomes completely
blind when Plaser > 205µW, and detector 1 becomes blind when Plaser > 400µW. To keep both
detectors blind, Plaser = 500µW is used subsequently. When a large pulse is applied between
the gates, the detector will always experience a dark count in the gate due to trapped carriers.
Figure 9 shows detector 1 blinded by a 140ns long, 500µW bright pulse, starting about 25ns
after the gate.

Initially when the blinding pulses are turned on, there is a transient with about 20-100 clicks,
which would be easily detectable in post-processing. Note again that the blinding only needs to
be turned on once, and that the blinding can be turned on before the raw key exchange to avoid
the clicks being registered.
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Fig. 9. Sinkhole blinding. The oscillograms show electrical and optical signals when de-
tector 1 is blinded by a 500µW, 140ns long laser pulse in between the gates. The avalanche
amplitude is about 130mV and would cause a click if it were not sitting in the negative-
voltage pulse. It seems that the reduction in avalanche amplitude (compare to Fig. 3) is
caused by heating of the APD, which effectively rises the breakdown voltage.

Table 4. Control pulse peak power at 0 % and 100 % click probability thresholds, during
sinkhole blinding

Detector
Click probabilities

0 % 100 %
0 655µW 751µW
1 773µW 908µW

Detector control is obtained by a 3.2ns long laser pulse timed shortly after the gate. The click
probability thresholds found are listed in Table 4. Figure 10 shows oscillograms from detector 1
when it is blind and controlled. Once again, the thresholds in Table 4 satisfy Eq. (1), and thus
the eavesdropping method described in Section 2 should be possible when the detectors are
sinkhole blinded.

5. Discussion and countermeasures

First of all, the numerous detectors proved blindable and controllable [27–29, 31, 54], and the
large number of independent blinding methods available show that avoiding this loophole is
non-trivial. Further the results presented in this paper clearly show that removing the impedance
of the bias voltage supply is far from being a sufficient countermeasure for this detector design.
Yuan et al. proposed to lower the comparator threshold, but as seen from the oscillograms in
Fig. 9 sinkhole blinding can produce a very low amplitude on the comparator input by choosing
an appropriate duty cycle of the blinding illumination. Therefore, lowering the comparator
threshold also seems to be an insufficient countermeasure.
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Fig. 10. Detector control during sinkhole blinding. The oscillograms show electrical and
optical signals when detector 1 is blinded with a 500µW, 140ns long laser pulse in between
the gates, and controlled with a 3.2ns long laser pulse timed shortly after the gate. To the
left, the 773µW control pulse never causes any click. To the right, the 908µW control
pulse always causes a click.

At this point it is not clear to us how to design hack-proof detectors. As we pointed out previ-
ously, the most obvious countermeasure is to monitor the optical power at Bob’s entrance with
an additional detector. However as we also pointed out it is not obvious that this actually closes
the loophole; the click threshold close to the gate may be very low, allowing for practically
non-detectable control pulses [29]. Thus it is not clear how to set the threshold value for the
entrance monitor; in any case the threshold should be derived from and incorporated into a se-
curity proof. It would also be crucial that this monitoring detector is not blindable, while being
extremely sensitive. Until a detection scheme with a monitoring detector is proven secure, we
believe that it cannot be considered as a sufficient countermeasure.

For the passively quenched scheme it has been proposed previously to monitor APD parame-
ters such as APD bias voltage, current and temperature [27]. However, the results in Section 4.2
show that normal APD parameters do not necessarily guarantee single photon sensitivity: for
thermal blinding of frames all the APD parameters report normal values during the frames
while the detectors are in fact blind.

It is worth emphasizing that the loophole opens when Eve drives the detectors into an ab-
normal operating regime, namely the linear mode. However, there are also quantum detectors
which are actually designed to operate in linear mode. For example, homodyne detectors used
in continuous-variable QKD [58, 59] are probably not susceptible to the described attack.

6. Conclusion

The detectors in the Clavis2 QKD system have proved to be blindable by a variety of methods,
even with a low-impedance bias voltage supply. Further, the detectors can always be controlled
in the blind state. This allows eavesdropping on the QKD system, using the method described in
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Section 2. Since Eve may use an exact copy of Bob’s system, no parameters currently available
to Bob reveal Eve’s presence. In practice, this should allow for perfect eavesdropping where
Eve has an exact copy of Bob’s raw key, and thus can extract the full secret key. The eavesdrop-
ping strategy described in Section 2 has been implemented and used to capture 100% of the
raw key in a 290m experimental entanglement-based QKD system [31]. We see no practical
difficulties implementing the same eavesdropper for this commercial QKD system, using off-
the-shelf components. Actually we have proposed a plug-and-play eavesdropper scheme [29]
for easy deployment.

Many detectors have already been proved blindable and controllable by Eve [27–29], and
the large variety of blinding methods available for the system tested could probably be used
on other detector designs as well. While it is relatively easy to design a countermeasure that
prevents blinding attacks with the specific parameters chosen in the present work, it is unclear
to us how to build generic secure detectors.

This work further emphasizes the importance of thoroughly investigating the non-idealities
of each component in a QKD system, as well as battle-testing the system as a whole. This has
been a necessary step for any security technology, and will surely be a crucial step for QKD as
well. QKD cannot be cracked nor broken, since the principles have been proven secure once
and for all. Now the challenge is to make a truly secure implementation of QKD where the
components behave within the assumptions of the security proofs.

ID Quantique has been notified about the loophole prior to this publication, and has imple-
mented countermeasures.

A. Measurement setup

Figure 11 shows the measurement setup used for this experiment. The trigger signal is tapped
directly from the PECL gate signal (before DD1 in Fig. 2).

When pump current is used to control the power of the laser, the pulse width will vary slightly
with the peak power. In our experiment, the observed change in pulse width is less than 10 %
after doubling the laser power. Also, the comparator threshold does not seem to be significantly
dependent on the pulse width, thus we consider our results valid despite this small change in
the laser pulse width.
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Fig. 11. The setup used in the experiment. Both detectors were illuminated simultaneously
by inserting a 50/50 fibre-optic coupler (not shown in the diagram) before the APDs.

B. Direct measurement of quantum efficiency

When CW illumination is applied to the APD, the applied electrical gate “propagates” to the
comparator input. This might be caused by a change in linear multiplication coefficient caused
by the electrical gate. This allowed us to measure the quantum efficiency mapped inside the
“propagated” gate with about 200ps precision.
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Fig. 12. Quantum efficiency measured directly within the electrical gate for detector 1. The
photon sensitivity drops about 1ns before the falling edge of the gate, because avalanches
that start late do not have time to develop a large enough current to cross the comparator
threshold.

The single photon sensitivity was measured using a id300 short-pulsed laser attenuated to
a mean photon number of 1 per pulse. The quantum efficiency η was derived from the data
assuming that the detector is linear (i.e. that an n-photon state is detected with probability 1−
(1−η)n). The timing of the photon arrival at the APD relative to the applied gate was aligned
by observing a response to unattenuated laser pulse on top of the 2.1mW CW illumination.
Figure 12 shows the result of the measurement on detector 1.
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Abstract. We present a method to control the detection events in quantum key
distribution systems that use gated single-photon detectors. We employ bright
pulses as faked states, timed to arrive at the avalanche photodiodes outside the
activation time. The attack can remain unnoticed, since the faked states do not
increase the error rate per se. This allows for an intercept–resend attack, where
an eavesdropper transfers her detection events to the legitimate receiver without
causing any errors. As a side effect, afterpulses, originating from accumulated
charge carriers in the detectors, increase the error rate. We have experimentally
tested detectors of the system id3110 (Clavis2) from ID Quantique. We identify
the parameter regime in which the attack is feasible despite the side effect.
Furthermore, we outline how simple modifications in the implementation can
make the device immune to this attack.
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1. Introduction

An intriguing feature of quantum optics is that it enables communication protocols that are
impossible to achieve by classical means. One prominent example is quantum key distribution
(QKD) [1, 2], which in principle allows two parties (Alice and Bob) to communicate with
unconditional security. It is thus impossible for an arbitrarily powerful eavesdropper (Eve) to
obtain knowledge of the transmitted information.

In the well-known Bennett–Brassard 1984 (BB84) protocol in its original form [3], Alice
sends single photons of different polarizations to Bob. Under ideal conditions, the security of
this protocol can be rigorously proved [4]. Furthermore, practically feasible procedures for
distilling a secret key from the exchanged quantum states are known [5]. During the distillation,
Alice and Bob generate a key sequence out of their raw data stemming from the quantum state
exchange. Eve’s attempt to gain knowledge results in a perturbation of the quantum states, such
that her information about the raw key can be upper bounded. Alice and Bob can thus shrink
their raw data such that Eve’s knowledge of the resulting key sequence becomes negligible.

Rigorous security proofs show that Eve cannot successfully attack an ideal implementation
of BB84. However, real implementations always exhibit deviations from the ideal model. In
order to guarantee secure communication, such deviations must be included into the security
proofs. One example is the use of weak coherent states instead of single photons, which
is considered in the Gottesman–Lo–Lütkenhaus–Preskill security proof [6]. The resulting
reduction of the key rate can be mitigated by modifications to the protocol, such as in the decoy
state method [7]–[9] or in the Scarani–Acin–Ribordy–Gisin 2004 (SARG04) protocol [10].
More subtle deviations can result in side channels through which information can unnoticeably
leak to Eve. For example, photons might carry information in unwanted degrees of freedom [11].
Once such side channels are known, they need to be considered in a more general security
proof.

New Journal of Physics 13 (2011) 013043 (http://www.njp.org/)
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Nowadays, quantum cryptography has matured to the point where several commercial
products are available8,9. Each system might have loopholes that are particular to its
implementation. Some implementations are, for example, susceptible to non-conforming light
pulses that Eve sends into Alice’s or Bob’s devices. Eve could use reflectometry to read
modulator states [12] or take control of the detectors by sending faked states [13, 14], time-
shifted pulses [15] or by detector blinding combined with faked states [16]. The impact of such
interventions strongly depends on the particular implementation. It is thus difficult to include
them in general security proofs. Alternatively, specific countermeasures could be devised by
adapting hardware or software of the systems, such that all assumptions in the security proof
about the QKD module are again valid.

In this paper, we investigate a particular attack on the QKD device id3110 Clavis2 from
ID Quantique. The fiber-based system utilizes the plug&play principle [17], where the quantum
states are encoded as the relative phase of two pulses. In our experiment, we send irregular,
bright light pulses (faked states) outside the activation time of the gated detectors. We show
that we can generate measurement results in the Bob module with only a slight increase in the
quantum bit error rate (QBER), if the side effects of the attack are considered properly.

The paper is organized as follows. Section 2 describes the basic principles of our attack. In
section 3, we elaborate on the particular implementation of the detectors in the Clavis2 system.
In section 4, we present the imperfections found in the system. Section 5 discusses the side effect
of the faked-state attack, which actually partly protects the security of the system. Section 6
presents all of the necessary elements for simulations and shows the parameters for which the
Clavis2 system is not secure. In section 7, we discuss possible countermeasures against the
proposed attack before concluding in section 8.

2. Intercept–resend attack using faked states

In the BB84 protocol [3], Alice randomly chooses one of two non-orthogonal bases to encode
her quantum bit. Bob independently chooses his measurement basis at random. If his basis
matches Alice’s, he will measure the quantum state correctly. In half of the cases, however,
Bob chooses the wrong basis. Alice and Bob compare the encoding and measurement basis
via a classical authenticated channel and remove all events with basis mismatch from their
raw data.

In an intercept–resend attack, Eve places a copy of Bob’s apparatus into the quantum
channel. Then she performs the same kind of measurement as Bob, tries to reproduce the
original quantum state and sends it to Bob. Since Eve is unaware of Alice’s basis choice, she
will inevitably introduce errors in case of a basis mismatch between her basis and the one used
by Alice and Bob. Eve will thus always be detected in a perfect implementation of a QKD
system [5, 6].

In case of an imperfect implementation, however, Eve may attack the QKD system by
sending faked states instead of quantum states [13]. Her aim is to generate faked states that only
produce a detection event in the Bob module if Eve’s basis matches Bob’s basis. In this case,
after Alice and Bob discard their non-matching bases, all that remains in the key are bits for
which Alice, Eve and Bob had the same basis. Thus, Eve generates no errors.

8 ID Quantique, URL: http://www.idquantique.com.
9 MagiQ Technologies, URL: http://www.magiqtech.com.

New Journal of Physics 13 (2011) 013043 (http://www.njp.org/)



4

Figure 1. Equivalent circuit diagram of Bob’s detectors in Clavis2. See text for
description.

After the attack, Bob and Eve share identical bit values and basis choices. The attack works
on widely used QKD protocols, namely BB84, SARG04 and the decoy method. The attack
exhibits an extra 3 dB loss because of the possible basis mismatch of Eve and Bob. This is easily
compensated in a practical Eve, since she may use better detector efficiencies and exclude loss
in the line [13].

3. Detectors in Clavis2

The impact of faked states strongly depends on the implementation of the detection scheme
in a QKD system. We will focus on systems employing avalanche photodiodes (APDs) in the
Geiger mode, as is the case in many QKD systems [18, 19], and all commercially available
realizations (see footnotes 8 and 9). Furthermore, we assume that the APDs are gated, i.e.
activated only in time intervals when signal states are expected to arrive. During the activation
time, a large reverse voltage is applied to the APDs such that the APDs are biased above
the breakdown voltage. Then a single photon can trigger a carrier avalanche that results in a
macroscopic current. If the generated current exceeds a certain threshold, a detection event
(click) is registered.

As an example, we consider the behavior of the gated detectors in ID Quantique’s Clavis2
QKD system. A detector circuitry reverse-engineered by us is shown in figure 1. In the
following, we explain the circuitry and mention the detector parameters that were preset by the
manufacturer. The APDs are biased by the high-voltage supply with VHV;D0/D1 almost as large as
the breakdown voltage (VHV;D0 = −42.89 V and VHV;D1 = −43.08 V). The detectors are gated
in the Geiger mode by means of TTL signals, which are applied on top of the bias voltage with
a period of 200 ns. The gates are supplied as PECL logic-level signals from the main board and
converted to TTL signals by the buffer DD1. The comparator DA1 monitors the APD current
and registers a click in the detector when the current peak passes a threshold (VTh;D0 = 77 mV,
VTh;D1 = 84 mV). The comparator produces a PECL output pulse for each detection event.

During all of the time not covered by the gate, each APD is biased at a constant value
VHV;D0/D1 below the breakdown voltage. The current through the APD is then approximately
proportional to the incident optical power. The circuit behaves similarly to a linear photodiode
followed by a comparator.

New Journal of Physics 13 (2011) 013043 (http://www.njp.org/)
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Figure 2. Principle of detector control. In the detection part of a phase-encoded
QKD, the two pulses that could be generated by Eve as a faked state interfere
at a 50 : 50 beamsplitter. (a) For Bob’s basis choice matching Eve’s, the signals
interfere such that detector D0 clicks deterministically, because the photocurrent
surpasses the detection threshold ITh;D0. (b) For Bob’s basis choice not matching
Eve’s, the power is split 50 : 50 to both detectors. The photocurrent does not
surpass the threshold. Therefore, the faked state is not detected.

4. Description of loopholes in the system

In the following subsections, we describe two unexpected deviations of the detection system
from the idealized behavior implicitly assumed by the designers of the QKD system. We start
by explaining the detection process in detail. In an ideal plug&play system, the relative phase
between the signal states and reference pulses in the receiver module (0, π/2, π , 3π/2) is
determined by a combined phase modulation of Alice and Bob, i.e. by a combination of Alice’s
bit and basis (0, π/2, π , 3π/2) and Bob’s measurement basis (0, π/2).

Let us consider a standard intercept–resend attack. For a matching basis choice of Alice,
Eve and Bob, the phase difference is 0 or π . This restricts the possible outcome of the
measurement to a single detector and results in a conclusive outcome for Bob. For a mismatched
basis choice, the phase difference is π/2 or 3π/2. In this case, either of their detectors will click
randomly. This clearly causes a QBER of 25%.

4.1. Linear mode avalanche photodiodes

In the linear regime of the APDs, Eve can substitute the quantum states with bright coherent
states [16]. Figure 2 shows examples of pulses that generate a click only if Bob’s and Eve’s
bases match, since the comparator following the APD will only click if the input optical power

New Journal of Physics 13 (2011) 013043 (http://www.njp.org/)
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(a) (b)

Figure 3. Detection click thresholds in Clavis2 for a pulse duration of 0.12 ns.
(a) Power thresholds PD0,D1;0%,100% for 0 and 100% probability of a bright pulse
detection in detectors D0 and D1. The fluctuations are reproducible and are
probably caused by the fluctuating bias voltage after the gate. (b) Calculated
2(t) (see equation (1)), which shows that an atttack is possible for delays of
4.5–10 ns with an optimal and comfortable margin of 2 at 7.5 ns.

surpasses a critical power threshold. In case of a basis mismatch, the optical power is distributed
equally among the detectors and no detection click is generated.

To exploit the loophole experimentally, we look closer at the detector characteristics.
As mentioned, the APDs are biased below the breakdown voltage before and after the gate.
Optically, Bob’s phase modulation extends temporally on either side of the gate pulse by
approximately 10 ns. We have verified that the system accepts clicks at least 10.5 ns after the
gate, still assigning the click to the bit slot associated with the gate.

We send bright laser pulses to both detectors before and after they are gated, in order to
find the click thresholds of each detector. A perfect control of Bob is possible if the maximum
power at which the detectors do not produce clicks is higher than half the power at which they
always produce a click. This can be written as

2(t) =
min

{
PD0;0% (t) , PD1;0% (t)

}
max

{
PD0;100% (t) , PD1;100% (t)

} > 0.5, (1)

where t is the time between the leading edge of the gate and the bright pulse, PD0;0%(t) is the
maximum power that does not generate a click in D0 and PD0;100%(t) is the minimum power that
certainly generates a click in D0 (analogously for D1).

We have found that the linear behavior prior to the gate cannot be exploited, since charge
carrier generation results in a large afterpulse effect during the gate. For an attack after the gate,
figure 3 shows the experimentally measured power thresholds and the corresponding values of
2(t) for 0.12 ns long 1550 nm laser pulses. The figure shows that an attack is feasible in a wide
time window with the maximum value of 2(t) at 7.5 ns after the gate. At this time, a 587 µW
laser pulse can cause a click in both detectors, while a 293.5 µW laser pulse will never cause
a click in any detector. This result reveals a weak spot in the system. We have found, however,
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extends the effective dead time. (upper oscillogram) The gate pattern applied
to the detector. (lower oscillogram) Optical power of successive bright pulses
impinging on the detector with a delay of 4 µs.

that the attack cannot be applied straightforwardly, because of an afterpulsing side effect, which
is discussed in section 5. Therefore, we attacked at the point 7.75 ns after the gate to slightly
reduce the maximum laser power applied to the system. At 7.75 ns after the gate, a 575 µW
laser pulse can cause a click in both detectors, while a 287.5 µW laser pulse will never cause a
click in any detector.

4.2. Faked states applied during the dead time

As a second loophole in the system, we have found that the system registers detection events
from bright faked states at any time. Typically, the device applies a dead time of 10 µs whenever
the system registers a click at any of the detectors, not gating both APDs for the duration of the
dead time [22]. However, we have found that the time between the detection events originating
from our faked states can be as short as 30 ns.

Figure 4 shows the effect of a bright pulse arriving during the dead time. The electronic
logic registers a valid click and subsequently resets the dead time to another 10 µs after the
second bright pulse. We found experimentally that in the dead time all faked states with a laser
peak power of 575 µW were detected by detector D0 while the detection probability of Bob’s
D1 was ηB > 0.99985. In section 6.2, we will show how this loophole can be exploited in order
to overcome the negative side effect of afterpulses, which is described in the next section.

5. Characterization of afterpulsing side effect

Once a detection is registered in a gated APD, a long dead time is typically applied to reduce
afterpulsing. This dead time is considerably longer than the inverse of the gating frequency and
is typically of the order of several microseconds.

New Journal of Physics 13 (2011) 013043 (http://www.njp.org/)
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Figure 5. Afterpulses caused by the after-gate attack. The chart shows the
experimentally measured cumulative probability to obtain at least one dark count
after a 287.5 µW pulse applied to both detectors (red dots), and a Monte Carlo
simulation of the same process using the parameters from table 1 (solid line).

The afterpulse effect is due to carrier traps, which are populated by avalanche current in
the detection process [19, 23]. We have found that bright pulses also populate the carrier traps,
irrespective of whether they generate detection events or not. Without a registered detection, a
dead time is not applied by the detector’s circuitry. The carriers released from traps can therefore
cause afterpulsing in the detector. These uncontrollable clicks will contribute to the QBER.

We have characterized this side effect of the after-gate attack in the successive gates by
plugging a laser directly to one of the fiber inputs of the 50 : 50 beamsplitter of figure 2. The
laser pulses have a peak power of 287.5 µW for each detector. As expected, the pulse never
causes a click immediately. However, very often it causes an afterpulse within the following
gates. Figure 5 shows the cumulative probability to obtain a click in any of the two detectors in
the next gates. After 50 gates, the cumulative probability to obtain a random click has reached
84%, which could jeopardize Eve’s attack by causing a too high QBER.

Note that the system sends frames of 1075 pulses as dictated by the send–return
configuration [17]. Therefore, the attack can always be applied in the end of the frame with
a reduced risk of a random afterpulse. If the system requires on average only one detection
per two frames, then the security is completely compromised. Additionally, the attack may be
applicable for a different set of system parameters, e.g. different operation frequencies of Bob.

We have modeled the afterpulse effects of carrier traps. We have found that the probabilities
Pap;D0/D1(t j) of a detection event after a faked-state attack can be modeled using a double
exponential decay for the detectors,

Pap;D0/D1(t j) = Pdark;D0/D1 + (1 − Pdark;D0/D1)

2∑
i=1

Ai;D0/D1e−t j /τi;D0/D1, (2)

where Pdark;D0/D1 is the dark count probability, Ai;D0/D1 are probability amplitudes that depend
on the number of carriers that are generated in the detector, and τi;D0/D1 are the associated
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Table 1. Decay parameters of trap levels in both detectors. These parameters
were used for the Monte Carlo simulation shown in figure 5.

Detector 0 Detector 1

Parameter Value Parameter Value

Pdark;D0 1.158 × 10−4 Pdark;D1 3.812 × 10−4

A1;D0 3.572 × 10−2 A1;D1 1.068 × 10−1

A2;D0 2.283 × 10−2 A2;D1 5.054 × 10−2

τ1;D0 1.159 µs τ1;D1 0.705 µs
τ2;D0 4.277 µs τ2;D1 3.866 µs

decay constants. The afterpulse probabilities in figure 5 were reproduced by a Monte Carlo
simulation using the double exponential decay model given by equation (2). By iterating the
Monte Carlo simulation, the decay parameters were found by minimizing the squared distance
between the measurement data and the simulation data, equivalent to the method of least squares
in regression analysis. Table 1 shows the resulting decay parameters, and the final Monte Carlo
simulation is shown in figure 5. The decay parameters are in agreement with earlier published
data on APDs [19, 23].

6. Simulations of after-gate attack and quantum bit error rate estimation

We estimate the QBER for different attack scenarios using a Monte Carlo simulation. In our
simulation, Alice and Bob use the BB84 protocol. Eve performs a faked-state attack by putting
her modified Bob and Alice modules in the channel. Eve places her Bob module in the beginning
of the line next to Alice. We assume that Alice sends an optimized signal amplitude [20] where
the sent mean photon number µ is equal to the channel transmittance T . Unless otherwise
noted, Eve measures this signal with perfect detectors (100% efficiency and noiseless) and a
lossless apparatus. Then she reproduces a bright faked state with the corresponding bit value
for Bob.

Bob’s module is simulated, including realistic parameters that were determined
experimentally for our device. Besides the parameters for the afterpulsing and dark count effects
(see table 1), there are the optical transmittance of Bob’s setup (TB = 0.412), the quantum
efficiency of the detectors (ηB = 0.1) and the detector dead time (τdead = 10 µs).

In the simulation, we process the consecutive gates of a frame separately. We incorporate
the side effect by increasing the afterpulse probability of a detector, if carriers were generated
either by a regular avalanche or by bright pulses with full or half power10. We have
experimentally verified that for the operation frequency and used optical powers, the carrier
traps in the detectors are not saturated by our attack and that the afterpulses of the two
carrier-generating processes with different lifetimes occur independently and with Poissonian
statistics [21]. The afterpulse probability of a gate at time t j is then increased by a previous gate

10 Carrier generation by the half-power pulses is the most important effect, because the system does not apply the
dead time after them.
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Figure 6. We attack only the last χ gates of the total number of gates N = 1075
in the frame, such that the raw key rate generated by the attack on each frame is
equal to the rate without eavesdropping.

with carrier generation at time tk as

Pnew
ap;D0/D1(t j) = Pold

ap;D0/D1(t j) + (1 − Pold
ap;D0/D1(t j))

2∑
i=1

γi;D0/D1 Ai;D0/D1e−(t j −tk)/τi;D0/D1, (3)

where γi;D0/D1 is a correction of the probability amplitude Ai;D0/D1. In case of a bright
pulse attack with 287.5 µW pulses, γi;D0/D1 = 1. For a bright pulse attack with full 575 µW
power to one detector (successful attack), we increase the afterpulse probability by applying
equation (3) twice. We have measured that a regular avalanche in D0 and D1 has {γi;D0, γi;D1} =

{1.836, 3.673}.

6.1. Strategy of Eve with dead time

We first simulated the QBER without the dead-time loophole described in section 4.2, i.e.
assuming that Bob rejects detection events during the detector dead time. To increase the
performance of Eve’s attack, she adopts the following strategy. (i) Attack only the last χ gates
of the total of N gates of a frame, as shown in figure 6. This will lead to a larger trapped carrier
density at the end of the frame, which, when gates are absent, is ignored by the detectors. (ii) Use
a small classical memory (up to three consecutive gates), which allows for checking whether
she received several consecutive clicks. These are then sent to Bob as a burst attack. This will
lead to a decreased time between failed attacks and following attacks, which suppresses the
afterpulsing by forcing earlier dead time. (iii) After the burst attack, wait as long as the dead
time of Bob’s detectors, in order to avoid carrier generation and afterpulsing directly after the
dead time.

We perform a simulation of the QBER induced by the attack for varying repetition rate and
channel transmittance. Repetition rates between 100 kHz and 10 MHz are simulated, because
the maximal gate frequency of 8 MHz specified for stand-alone single-photon counters id201
from ID Quantique11 suggests that gate frequencies in this range are feasible. The simulation
consists of two major steps. Firstly, Eve adjusts the number of attacked gates χ in order to adjust
the channel transmittance T to the one anticipated by Alice and Bob. Eve tries to maximize the
burst length in her attack. For a decreasing channel transmittance, Eve, however, receives fewer
photons from Alice. Therefore, the maximal burst length decreases for decreasing transmittance

11 Datasheet id201, ID Quantique.
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Figure 7. Simulated attack performance for the case when Bob discards
clicks during the detector dead time. (a) Burst length for different channel
transmittances and gate frequencies. (b) QBER generated by the attack. We show
contour lines for QKD security proofs that are more [24] or less [5] tolerant to
errors, allowing for a QBER of 20 or 11%, respectively.

(see figure 7(a)). Secondly, the QBER is simulated for 104 frames. The average QBER is shown
in figure 7(b) and compared to upper bounds of two different security proofs [5, 24]. The
protocol in [24] would require a single photon source and is therefore not directly applicable
in Clavis2. Therefore, we find that the attack cannot compromise the security of Clavis2
due to increased afterpulse probability at the gate repetition rate of 5 MHz. However, the
security would be compromised for a more advanced system using single photons and the
protocol in [24], or for gate frequencies below about 1 MHz. We note that there are numerous
experimental setups and a commercial QKD system (see footnote 9) working below the critical
operation frequency of about 1 MHz. Additionally, technological improvements in the detectors
could reduce the afterpulse effects and thereby enable the attack for high frequencies.

6.2. Strategy of Eve without dead time

Eve can adapt her attack strategy if she has access to both the after-gate and the dead-time
loopholes. In the following, we show a strategy that is not an optimized one, but a rather intuitive
and (as it turns out) successful approach. Eve again attacks the end of the frame, as shown in
figure 6. Her strategy is to attack as frequently as possible. Thereby, she quickly enters a dead
time of Bob’s detectors. She will generate detection events during the dead time and, thereby,
can prolong the detector dead time, as shown in section 4.2. Ideally, a major part of the attack
happens during the dead state, which would completely remove the effect of afterpulses and
result in negligible QBER for this part of the attack.

In the simulation, we again adjust the number of attacked gates χ and simulate the QBER
for 104 frames. Figure 8 shows that for high transmittance, the QKD system is vulnerable against
the advanced attack, including for an eavesdropper with detection efficiency implementable
today. The photon statistics are maintained during the attack. It is therefore also applicable to
decoy state protocols [7]–[9].
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Figure 8. Simulated attack performance without dead time. The figures show
the QBER generated by the attack, taking advantage of the sensitivity of the
detectors during the dead time together with the elongation of the dead time.
(a) QBER with a perfect Eve. The attack is feasible for all repetition rates and
a wide range of channel transmittances. (b) QBER with a realistic Eve with
a detection efficiency TBηB = 0.5 and a dark count probability Pdark = 10−5,
corresponding to a technically advanced but feasible eavesdropper.

7. Countermeasures

Note that both eavesdropping strategies (especially the latter one) leave strong fingerprints.
In the latter case, the distance between two valid detection events can be smaller than the
dead time of 10 µs. Therefore, one countermeasure is to search for too closely timed detection
events. Furthermore, rejecting detections during the dead time would restrict eavesdropping
to lower frequencies, as shown by our first simulation (see figure 7). A complete protection
against the presented attacks is guaranteed if the detection times are resolved, such that Bob can
discriminate between detections inside and outside the single-photon-sensitive part of the gate.
Note, however, that this is highly non-trivial since the intrinsic jitter caused by the avalanche
build-up is about equal to the length of the gate itself. Alternatively, a watchdog detector can
be placed at Bob’s input in order to detect bright faked states. Since such a detector cannot be
an avalanche detector (this can be hacked), the countermeasure is only effective against bright
faked states.

8. Conclusions

We have demonstrated that gated detectors in QKD systems can be controlled by an external
eavesdropper using bright laser pulses during the linear mode operation. In particular, we have
analyzed the attack parameters for the commercial QKD system Clavis2 from ID Quantique.
In principle, the system is controllable by bright trigger pulses arriving after the gate time.
Other present and future detector technologies will have to be tested for this vulnerability.
However, we have found a side effect: afterpulse generation due to the faked states. The side
effect generates high QBER, and therefore actually protects the system from a straightforward
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faked-state attack. Eve can, however, take advantage of a second imperfection, namely that the
system accepts the bright pulses even in the dead time and, furthermore, resets the remaining
dead time. In a simulation of the attack, we have found that the system is insecure if clicks
are accepted during the dead time. The presented after-gate attack can be used independently
or together with the blinding attack in [16]. Although the after-gate attack in contrast to the
blinding increases the QBER, it has the advantage that the optical power sent into the Bob
module is weaker. Therefore, the after-gate attack is harder to detect with a watchdog detector.
Another advantage is that this attack can be applied to detectors that are not blindable.

ID Quantique has been notified about this loophole prior to the submission of the
manuscript, and has implemented countermeasures. Part of their countermeasure is to remove
gates at random times, and check whether detection events still occur without a gate12. This
would likely reveal the after-gate attack, with the bright pulses placed well behind the gate.
However, it is not obvious that this fully negates the after-gate attack, since it might be possible
to shift the trigger pulse close to the gate, making it trigger only in the presence of a gate.
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Several attacks have been proposed on quantum key distribution systems with gated single-photon detectors.
The attacks involve triggering the detectors outside the center of the detector gate, and/or using bright illumination
to exploit classical photodiode mode of the detectors. Hence a secure detection scheme requires two features:
The detection events must take place in the middle of the gate, and the detector must be single-photon sensitive.
Here we present a technique called bit-mapped gating, which is an elegant way to force the detections in the
middle of the detector gate by coupling detection time and quantum bit error rate. We also discuss how to
guarantee single-photon sensitivity by directly measuring detector parameters. Bit-mapped gating also provides
a simple way to measure the detector blinding parameter in security proofs for quantum key distribution systems
with detector efficiency mismatch, which up until now has remained a theoretical, unmeasurable quantity. Thus if
single-photon sensitivity can be guaranteed within the gates, a detection scheme with bit-mapped gating satisfies
the assumptions of the current security proofs.

DOI: 10.1103/PhysRevA.83.032306 PACS number(s): 03.67.Dd

I. INTRODUCTION

Quantum mechanics allows two parties, Alice and Bob,
to grow a random, secret bit string at a distance [1–4]. In
theory, the quantum key distribution (QKD) is secure, even if
an eavesdropper Eve can do anything allowed by the currently
known laws of nature [5–9].

In practical QKD systems there will always be imperfec-
tions. The security of QKD systems with a large variety of
imperfections has been proved [5,10–17]. Device-independent
QKD tries to minimize the number of assumptions on the
system, but unfortunately the few assumptions [2,18,19] in
the security proofs seem to be too strict to allow useful
implementations [20] with current technology [21].

Several security loopholes caused by imperfections have
been identified, and attacks have been proposed and in
some cases implemented [15,22–34]. With notable exceptions
[22,23,27,30,33], most of the loopholes are caused by an
insufficient model of the detectors.

While several detection schemes exist, most implementa-
tions use avalanche photodiodes (APDs) gated in the time
domain to avoid a high rate of dark counts. Gated means that
the APD is single-photon sensitive only when a photon is
expected to arrive in a time window called the detector gate.
Attacks on these detection schemes are based on exploiting
the classical photodiode mode of the APD, or the detector
response at the beginning and/or end of the detector gate.

In the attacks based on the classical photodiode mode of
the APD, the detectors are triggered by bright pulses [28,31].
If necessary, the APDs can be kept in the classical photodiode
mode, in a so-called blind state, using additional bright
background illumination [28,29,31,34,35]. When the detectors
are blind, they are not single-photon sensitive any more, but
only respond to bright optical trigger pulses. In most gated
systems, blinding is not necessary because the APDs are in
the classical photodiode mode outside the gates. Therefore, in

*lars.lydersen@iet.ntnu.no

the after-gate attack [36], the trigger pulses are simply placed
after the gate.

Several attacks are based on detector efficiency mismatch
(DEM) [24]. If Bob’s apparatus has DEM, Eve can control
the efficiencies of Bob’s detectors individually, by choosing
a parameter t in some external domain. Examples of such
domains can be the timing, polarization, or frequency of the
photons [14,24]. As an example, consider DEM in the time
domain. Usually Bob’s apparatus contains two single-photon
detectors to detect the incoming photons, one for each bit
value. Owing to different optical path lengths, inaccuracies
in the electronics, and finite precision in detector manufac-
turing, the detection windows and hence the efficiency curves
of the two detectors a and b are slightly shifted, as seen in
Fig. 1(a). Several attacks exploit DEM [15,24,25] in various
protocols [37], some of which are implementable with current
technology. The time-shift attack [25] has been used to gain an
information-theoretical advantage for Eve when applied to a
commercially available QKD system [32]. In the experiment,
Eve captured partial information about the key in 4% of her
attempts, such that she could improve her search over possible
keys.

After each loophole has been identified, effort has been
made to restore the security of the detection schemes. DEM is
now included in the receiver model of several security proofs
[14,15,17] as an efficiency mismatch or blinding parameter η,
defined differently according to the generality of the proof. For
arbitrary systems that can be described with linear optics [15],

η = mint {ηa(t),ηb(t)}
maxt {ηa(t),ηb(t)} , (1)

where ηa(t) and ηb(t) are the detection efficiencies of the
two detectors. Here t labels the different optical modes; in
the special case without mode coupling it labels the different
temporal modes. An example is given in Fig. 1(a). In the
most general case η is given by the lowest probability that a
nonvacuum state incident to Bob is detected [17]. For either
definition of η, there is an infinite number of modes involved

032306-11050-2947/2011/83(3)/032306(7) ©2011 American Physical Society
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FIG. 1. (Color online) Bit-mapped gating. (a) Detector gates with
DEM. ηa(t) (blue, dashed) and ηb(t) (red, solid) are the efficiencies
of the two detectors a and b with respect to time t . (b),(c) Possible
optical bit mapping (teal) when the software bit mapping is set to
a → 0, b → 1 (b) and a → 1, b → 0 (c). In a phase-encoded system
the two levels would correspond to 0 and π phase shift in one basis,
and π/2 and 3π/2 phase shift in the opposite basis. Note that software
bit mapping and optical bit mapping coincide in the bit-mapped gate,
which is well within the detector gates. (d) QBERmin(t) (green) as
obtained from (8) with the bit-mapped gate shown in (b) and (c).

(all superpositions of temporal modes [15]), which makes the
blinding parameter difficult to measure or bound in practice.
For a given value of η, the secret key rate is given by [17]

R � −h(E) + η[1 − h(E)], (2)

where E is the quantum bit error rate (QBER) measured
by Alice and Bob, and h(·) is the binary Shannon entropy
function. Here we have assumed symmetry between the bases
in the protocol; in addition, we have ignored any basis
leakage from Alice and back reflection from Bob (the most
general expression is given in the original reference [17]).
Unfortunately, in practical systems the rate (2) will usually be
zero, because η → 0 owing to the edges of the detector gates.
For the commercial QKD system subject to the time-shift

attack, η < 0.01 [estimated from the curves in Fig. 3 of
Ref. [32] using Eq. (1)].

As noted in Ref. [15], one way of obtaining a better η would
be to discard pulses near the edge of the detector gate. Then
η could be calculated from (1) including only the modes t

that are accepted as valid detections. However, this is highly
nontrivial. The avalanche in an APD is a random process, and
the jitter in the photon-timing resolution is of the same order
of magnitude as the duration of the detector gate. A good
photon-timing resolving detector still has 27-ps jitter [38].
Furthermore, the unavoidable difference in the acceptance
windows for the different detectors will also contribute to
DEM (one detector accepts clicks while the other discards
them).

A frequently mentioned countermeasure for systems with
DEM is called four-state Bob [24,25,39,40]. Then Bob uses
a random detector–bit mapping, randomly assigning the bit
values 0 and 1 to the detectors a,b for each gate. In a
phase-encoded QKD system, this can be implemented by Bob
choosing from four different phase settings {0,π/2,π,3π/2}
instead of only two {0,π/2}. Then Eve does not know
which detector characteristics correspond to which bit value.
However, as mentioned previously [15,24,25], this patch does
not close the loophole. Eve may use a Trojan-horse attack
[22,23,41,42] to read Bob’s phase modulator settings. While
Alice’s system is usually secured against the Trojan-horse
attack by the optical attenuator at her entrance, this solution
will not work for Bob’s system because the attenuator would
also absorb nearly all the single photons from Alice. Note
also that the four-state Bob patch does not secure against
the after-gate attack [36] nor any of the detector control
attacks [31,35].

Here we present a novel way of securing Bob’s receiver
called bit-mapped gating (Sec. II). It secures the system against
all kinds of pulses outside the central part of the detector gate
in the Bennett-Brassard 1984 (BB84) and related protocols
[1,43–45]. The technique is compatible with the existing
security proofs [14,15,17] and makes it simple to find η.
In general, it represents a useful concept, where parameters
from characteristics of the QKD system are coupled to the
parameters estimated by the protocol. In this case η becomes
coupled to the QBER. Subsequently we analyze the security
of bit-mapped gating (Sec. III), discuss how to characterize
detectors, and how to implement a guarantee of single-photon
sensitivity (Sec. IV). Finally we conclude (Sec. V).

II. BIT-MAPPED GATING

Let us start with two definitions. Software bit mapping
determines how the signals from detectors a and b are mapped
into the logical bits 0, 1. Similarly, optical bit mapping, which
can be implemented by generalizing the basis selector, maps
quantum states with bit values 0,1 (for instance, |0〉,|1〉 in the
Z basis) to the detectors a,b. Note that if software bit mapping
and optical bit mapping do not coincide, the bit value 0 sent
by Alice will be detected as the bit value 1 by Bob.

Bit-mapped gating works as follows:
(1) Somewhere in between the detector gates, Bob randomly

selects software bit mapping, assigning detectors a,b to bit
values 0,1.
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(2) Likewise, the basis is selected randomly between the X

and Z basis, along with random optical bit mapping. Because
this happens between the detector gates, jitter is not critical.

(3) Inside the detector gate, optical bit mapping is matched
to software bit mapping. The period with matching optical and
software bit mapping is the bit-mapped gate.

Note that optical bit mapping can be equal on both sides of
the bit-mapped gate to minimize the need for random numbers.
Figure 1 shows a typical time diagram.

As an example, consider a phase-encoded implementation
of the BB84 protocol, where the basis selector at Bob is usually
a phase modulator. The zero-phase shift corresponds to the
Z basis and the π/2 phase shift corresponds to the X basis.
Optical bit mapping can be selected by adding either 0 or π to
the phase shift. Hence in this implementation the bit-mapped
gating patch could be implemented as follows: Bob randomly
selects software bit mapping somewhere between the gates.
Furthermore, Bob selects a random basis, i.e., 0 or π/2 phase
shift between the gates, and adds either 0 or π to the phase
shift to apply the random optical bit mapping. During the gate,
the software and optical bit mapping coincide.

All states received and detected outside the bit-mapping
gate cause random detection results (owing to the random
optical and software bit mapping), and thus introduce a QBER
of 50%. The measured QBER could be used to estimate the
fraction of detections that must have occurred in the center of
the gate (in Fig. 1: Close to zero QBER would mean that most
detection events must have passed the basis selector, and thus
hit the detector, in the middle of the gate). This can be used
to limit the DEM, because considering only the modes in the
center of the detector gate gives less DEM than considering
all modes.

III. SECURITY ANALYSIS

The goal of this section is to derive an expression for the
minimum QBER introduced by any state received by Bob,
during the transition to and from the bit-mapped gate. Ideally,
the minimum QBER is 0 inside the bit-mapped gate, and 1/2
outside the bit-mapped gate.

The input of Bob’s detection system consists of many
optical modes t , for instance, corresponding to different arrival
times at Bob’s system. Each mode t may contain a mixture of
different number states. Note that Bob could have measured
the photon number in each mode without disturbing the later
measurement; thus it suffices to address specific number states.
We use the usual assumption that each photon in a n-photon
state is detected individually. Under these assumptions, we
first calculate the minimum QBER caused by a single photon
arriving in a single mode at Bob. Then, in the Appendix, we
show that multiple photons in this mode, or photons in other
modes, can only increase the minimum QBER.

Consider a single photon arriving at Bob in a given mode t .
Because the BB84 protocol is symmetric with respect to the
bit values and the bases, we may assume without loss of
generality that Alice sent Z0 and that Bob measures in the
Z basis. Outside the bit-mapped gate, Bob performs four
different measurements depending on the software and optical
bit mapping. For each measurement, Bob will obtain one out of

three measurement outcomes, bit 0, bit 1, or vacuum denoted
by subscript v.

Let ηa,ηb be the efficiencies of the two detectors, |θ〉 =
cos θ |0〉 + sin θ |1〉 and |θ⊥〉 = sin θ |0〉 − cos θ |1〉. During a
bit-mapped gate, θ is varied from 0 to π/2. For each value of
θ , Bob performs one out of the four measurements,

M0 = ηa|0〉〈0|, M1 = ηb|1〉〈1|,
(3a)

Mv = I − M0 − M1,

M ′
0 = ηb|0〉〈0|, M ′

1 = ηa|1〉〈1|,
(3b)

M ′
v = I − M ′

0 − M ′
1,

M ′′
0 = ηa|θ〉〈θ |, M ′′

1 = ηb|θ⊥〉〈θ⊥|,
(3c)

M ′′
v = I − M ′′

0 − M ′′
1 ,

M ′′′
0 = ηb|θ〉〈θ |, M ′′′

1 = ηa|θ⊥〉〈θ⊥|,
(3d)

M ′′′
v = I − M ′′′

0 − M ′′′
1 .

If Bob uses the four measurements with equal probabil-
ities, the statistics will be given by using the measurement
operators,

E0 = 1
4 (M0 + M ′

0 + M ′′
0 + M ′′′

0 )

= 1
4 (ηa + ηb)[(1 + cos2 θ )|0〉〈0| + sin2 θ |1〉〈1|
+ sin θ cos θ (|0〉〈1| + |1〉〈0|)], (4a)

E1 = 1
4 (M1 + M ′

1 + M ′′
1 + M ′′′

1 )

= 1
4 (ηa + ηb)[sin2 θ |0〉〈0| + (1 + cos2 θ )|1〉〈1|
− sin θ cos θ (|0〉〈1| + |1〉〈0|)], (4b)

Ev = 1
4 (Mv + M ′

v + M ′′
v + M ′′′

v )

=
(

1 − ηa + ηb

2

)
I. (4c)

Note that Ev ∝ I , so the detection probability is indepen-
dent of the photon state ρ:

pdet = 1 − Tr[ρEv] = ηa + ηb

2
. (5)

The eigenvalues of operators E0 and E1 are given by
pdet(1 ± cos θ )/2. Thus the minimum and maximum proba-
bility of detecting bit values 0 and 1 for any single photon sent
by Eve is given by

p0, min = p1, min = pdet

2
(1 − cos θ ), (6)

p0, max = p1, max = pdet

2
(1 + cos θ ). (7)

Because Alice sent Z0, the minimum QBER introduced by a
single photon is given by

QBERmin = p1, min

pdet
= 1

2
(1 − cos θ ). (8)

As expected, for θ = π/2, QBERmin = 1/2. For multiphotons,
a random bit value is assigned to double clicks [10,16].
The Appendix shows that sending multiple photons can only
increase the QBER caused by detection events. Hence Eq. (8)
gives the minimum QBER for any photonic state sent by Eve.
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The security proofs in Refs. [14,15,17] involve Bob
predicting the results of Alice’s virtual X-basis measurement.
Because the prediction is not carried out in practice, Bob can
perform any operation permitted by quantum mechanics. In
the proofs Bob’s prediction consists of a filter followed by
an “X-basis” measurement. When nothing is known about the
distribution of the detection events within the gate, the worst-
case assumption is that all the detection events occur with
maximum DEM. Therefore, the best filter we can construct can
only guarantee that a fraction η of the inputs can successfully
pass the filter.

With our patch, we may use the QBER to determine a
lower bound for the number of detection events which must
have occurred in the central part of the detector gate. Assuming
that t labels temporal modes, consider the number of detection
events that occurred in the range where QBERmin < E′ (see
Fig. 2). Here, E′ is a threshold selected by Bob. Let η′ be
the blinding parameter for the modes for the range where
QBERmin < E′. It can be calculated from Eq. (1), but where t

only runs over this range. If the measured QBER is equal to
E, a fraction

f = E′ − E

E′ (9)

must have been detected in the modes where QBERmin < E′.
Note that increasing E′ increases f , and may decrease η′ (see
Fig. 2). As will become apparent below, E′ should be selected
to maximize f η′.

For decoy protocols [43–45], E should be replaced with the
QBER estimated for single-photon states. This improves the
estimate of the fraction f , especially for large distances where
the dark counts become a major part of the total QBER.

In the worst case, a fraction f experienced a reduced
DEM η′. Therefore, the filters in the security proofs can be
replaced as follows: The new filter discards pulses in the

ηb(t)ηa(t)

Detector efficiency

Time
QBERmin

0

0.5

Time

E

FIG. 2. (Color online) Curves (a) and (d) from Fig. 1. The dashed
line shows how a threshold E′ can be used to limit the range of modes
t used to calculate or bound η′.

modes for which QBERmin > E′. For the modes inside the
bit-mapped gate, where QBERmin < E′, the new filter reverts
the quantum operation from the receiver in the opposite basis
in the same way that the old filter reverted it for all modes, but
now having a success rate η′. Because we can guarantee that
a fraction f of the photons are in the bit-mapped gate, at least
f η′ pulses will successfully pass the new filter. Therefore the
parameter η in all the proofs [14,15,17] can be replaced with
f η′, and the rate (2) becomes

R � −h(E) + f η′[1 − h(E)], (10)

when one assumes symmetry between the bases, and no source
errors. Without symmetry between the bases, all parameters
become basis dependent, and the rate is the sum of the rates in
each basis.

Let us see how bit-mapped gating could improve the secure
key rate for the commercial QKD system in Ref. [32]. For
this system, η < 0.01. In the same experiment, the QBER is
measured to be 5.68%. Assuming E′ = 0.45 and η′ = 0.9, f η′
becomes 0.79, thus a substantial improvement. In fact, the rate
obtained from Eq. (2) without the patch is 0, while the rate
obtained from Eq. (10) is 0.227, so clearly the patch can be
used to resecure an insecure implementation.

IV. DETECTOR DESIGN AND CHARACTERIZATION

When designing Bob’s system, one should ensure that the
bit-mapped gate is well within the detector gate, i.e., that
the detector efficiencies are approximately equal within the
bit-mapped gate. Then, it should be possible to measure or
bound the detector efficiencies and the basis selector response
θ (t) in the temporal domain. In a phase-encoded system this
would correspond to measuring the detector efficiencies and
the phase modulation as a function of time [46], over the
range of wavelengths and polarizations accepted by Bob. With
this data, the minimum QBER as a function of time can
be calculated from (8), and a diagram similar to Fig. 2 can
be obtained. After selecting an appropriate limit E′, η′ can be
calculated by (1) but where t runs only over the modes where
QBERmin < E′, and not over all available modes.

In general, there might be coupling between the differ-
ent temporal modes owing to misalignments and multiple
reflections [14,15]. The bit-mapped gate ensures that the
pulse passed the basis selector inside the temporal detector
gate, but does not guarantee the actual detection time. For
example, a pulse could pass in the center of the bit-mapped
gate, but afterwards take a multiple reflection path such that
it hits the detector outside the detector gate. This can be
handled by characterizing the worst-case mode coupling as
described previously [15]. Let δ be the worst-case (power)
coupling of modes inside the bit-mapped gate to outside the
gate. This will typically be the worst-case multiple-reflection
path after the basis selector, and should be boundable from
component characteristics. Then, the parameter δ can be
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interpreted as

δ = # pulses that hits the detector outside the gate

# pulses sent into the gate
. (11)

In the worst case, δ of the f detection events might have
happened outside the central part of the detector gate; thus one
must let f → f (1 − δ).

Finally one must guarantee that the detectors are not blind
within the gate [31], and fulfill the assumptions in Sec. III
during the transition of the optical bit mapping. Note that
the transition ends when there is no longer any correlation
between software bit mapping and optical bit mapping. If a
significant correlation exists also after the detector gate, it
could be exploited in the after-gate attack [36].

Although it is tempting to place an optical watchdog detec-
tor at the entrance of Bob, the absence of bright illumination
does not necessarily mean that the detectors are single-photon
sensitive. For instance, owing to the thermal inertia of the APD,
it can remain blind for a long time after the bright illumination
is turned off [35].

A cheap way to guarantee single-photon sensitivity is
to monitor all detector parameters [29], such as APD bias
voltage, current, and temperature. It seems difficult to monitor
the temperature of the APD chip [35], but monitoring the
bias voltage and current should make it possible to predict
the heat generated by the APD, and thus prevent thermal
blinding [35].

The ultimate way of guaranteeing single-photon sensitivity
is to measure it directly. This can be done by placing a
calibrated light source inside Bob that emits faint pulses at
random times [34] (see Fig. 3). Then the absence of detection
events caused by this source would indicate that the detector

C APD

LD

PMB

Bob

PBS

Short arm

Long arm
R

LD

Att.

DL

FIG. 3. (Color online) A calibrated light source inside Bob. The
figure shows the Bob module in a plug-and-play system [4,47–49],
which has two possible implementations of the calibrated light source:
either a separate attenuated laser diode (LD) at a suitable place, or
in the case of send-return systems where Bob already contains a
laser diode, a weakly reflective element (R) to reflect some light back
into the APDs. In one-way systems [3,50], Bob does not normally
contain any light source, therefore a separate laser diode would be the
only option. A short delay line (DL, delay > gate period/2) at Bob’s
input guarantees that Eve cannot interfere with the detector operation
based on whether the source is activated or not. PBS: polarizing
beam splitter; Att.: optical attenuator; PM: phase modulator; 50 : 50
fiber-optic coupler.

is blind. Further, a calibrated light source inside Bob could be
useful in more ways, for instance, to characterize and calibrate
detector performance in deployed systems.

The patch could cause a minor reduction in QKD perfor-
mance compared to running an (insecure) system without the
patch. In particular, the detector gates might have to be longer
to contain the basis-selector gate. This would increase the dark
count rate, and thus limit the maximum transmission distance.
A calibrated light source inside Bob would also cause a minor
reduction in the performance because the gates used for testing
the detector sensitivity likely cannot be used to extract the
secret key. However, both these effects are minor, and are
easily justified by the restoration of security.

V. DISCUSSION AND CONCLUSION

In this work, we have presented a technique called “bit-
mapped gating” to secure gated single-photon detectors in
QKD systems. It is based on a general concept where hardware
imperfections are coupled to the parameters estimated by
the protocol. Bit-mapped gating causes all detection events
outside the central part of the detector gate to cause high
QBER.

Bit-mapped gating is compatible with the current se-
curity proofs for QKD systems with detector efficiency
mismatch [14,15,17]. In particular, it provides a simple
way of measuring the detector blinding parameter. A secure
gated detection scheme is obtained if bit-mapped gating
is combined with detectors guaranteed to be single-photon
sensitive.
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APPENDIX: MINIMUM QBER FOR MULTIPHOTONS

Here we prove that the minimum QBER can only increase
when the number of photons sent to Bob is increased. As noted
previously, we use the usual assumption that each photon in a
n-photon state is detected individually. This means that each
photon hits a separate set of detectors, and then the detection
results are merged to give the detection results of threshold
detectors.

Let us first consider the case where Bob receives a large
number of two-photon states. Let the two photons within the
states be labeled 1 and 2. Individually, each of the two photons
would have caused the minimum QBER Q1 and Q2 [as found
from Eq. (8)]. Again we assume that Alice sends the bit value 0,
without loss of generality. For two-photon states there will be
three cases of detected events: either only photon 1 is detected,
only photon 2 is detected, or both photons are detected (in our
model, this latter possibility corresponds to the case where both
sets of detectors register a click). Let there be n1 events where
only photon 1 was detected, n2 events where only photon 2 was
detected, and c events where both photons were detected. For
photon i, out of the ni = ni,0 + ni,1 events, ni,0 and ni,1 were
detected as the bit value 0 and 1, respectively. Likewise, out
of the c = ci,0 + ci,1 events where both photons are detected,
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ci,0 and ci,1 were detected as the bit value 0 and 1 for photon
i (remember that in the model each photon hits a separate set
of detectors).

When only one of the photons is detected, the situation is
identical to the single-photon case treated in Sec. III. Hence
states such that Qi = ni,1/ni give the lowest possible QBER.
For the events where both photons are detected, the detections
can have any correlation, but for each photon ci,1 � cQi ,
because Qi represents the lowest fraction of the bit value 1
possible, regardless of the correlation with any other photon.
The total QBER Q can be found from merging the detections
from the two sets of detectors. Double clicks are assigned a
random bit value [10,16], therefore half of the double clicks

get the bit value 1. This gives the total QBER,

Q = n1,1 + n2,1 + 1
2 (c1,1 + c2,1)

n1 + n2 + c

�
Q1

(
n1 + c

2

) + Q2
(
n2 + c

2

)
n1 + n2 + c

� min(Q1,Q2). (A1)

By repeating the argument above, but replacing the detec-
tion of photon 1 with the detection of N photons, it is easy
to see that Q � min (QN,QN+1). Hence, by induction, any
detection event caused by more than one photon can only
cause a higher QBER than the single-photon case.
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Detector control attacks on quantum key distribution systems exploit the linear mode of avalanche photodiode in
single photon detectors. So far, the protocols under consideration have been the BB84 protocol and its
derivatives. Here we present how bright tailored illumination exploiting the linear mode of detectors can be used
to eavesdrop on distributed-phase-reference protocols, such as differential-phase-shift and coherent-one-way.
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1. Introduction

Quantum mechanics theoretically allows two parties,

Alice and Bob, to grow a private, secret key, even if the

eavesdropper Eve can do anything permitted by the

laws of nature [1–4]. The field of quantum key

distribution (QKD) has evolved rapidly in the last

two decades, with transmission distances reaching

250 km in the laboratory [5], and commercial QKD

systems available from several vendors [6].

Even though QKD can be proved secure in theory

[3,4,7], the implementations may contain loopholes

allowing side-channel attacks. In fact, many such side-

channel attacks have been identified and countered,

either by modifying the implementation, generalizing

the security proof, or both [8–22]. The discoveries of

implementation loopholes does not prove the insecu-

rity of QKD, but rather its maturity. Scrutinizing the

implementations is a vital step to achieve satisfactory

security in practical QKD.

In several experiments, the security of commercial

QKD systems has been broken. The time-shift attack

[11] based on detector efficiency mismatch [10] was

used to capture parts of the secret key [15] without

increasing the quantum bit error rate (QBER). The

phase-remapping attack [13] has been demonstrated to

capture the full key [18], causing however, a higher

QBER than accepted by the commercial systems.

Recently the detector control attacks [23–28]

exploiting the linear mode of avalanche photodiodes

(APDs) received considerable attention. In contrast to

previous attacks, they allow the eavesdropper Eve

to copy the full key, while not being revealed by

monitored parameters, such as the QBER.

Furthermore, the attacks are implementable with

current technology. The loophole has been identified

in two commercial QKD systems [24], and the full

attack has been demonstrated under realistic condi-

tions on an experimental QKD setup [27].

Furthermore, it has been proved possible to keep the

APDs in the linear mode through blinding illumination

for both passively-quenched [23,27], actively-quenched

[28] and gated APDs [24–26] through a variety of

techniques. Note that some experimental QKD sys-

tems might be resistant [29] to the simplest blinding

techniques [30].

So far these bright illumination detector control

attacks have been considered on the Bennett–Brassard

1984 (BB84) protocol [1] and its derivatives with

similar implementations, such as the Scarani–Acin–

Ribordy–Gisin 2004 (SARG04) [31], Ekert [2], six-state

[32,33], and decoy protocols [34–36]. Here we present

how to exploit the linear mode of the detectors

in distributed-phase-reference protocols such as

differential-phase-shift (DPS) [37,38] and coherent-

one-way (COW) [39,40] to tracelessly eavesdrop the

full raw and secret key.

2. Eavesdropping on linear detectors

For the distributed-phase-reference protocols consid-

ered here, the implementation of Bob is ‘passive’ in the

sense that Bob does not use a modulator that intro-

duces randomness into his detection system (similarly

to passive versus active basis choice in the BB84
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protocol [41]). Detector control is easier for passive

implementations, since Eve does not have to deal with

different possibilities associated with Bob randomly

selecting a measurement.

In a detector control attack, Eve measures the

states from Alice using a copy of Bob’s measurement

device (Bob0) to obtain a detection event. Eve resends a

bright trigger pulse targeting the detectors operated in

the linear mode, and in a successful attack it causes the

exact same detection event in Bob’s measurement

device (see Figure 1). Since Eve uses a copy of Bob,

Bob’s detection statistics will be indistinguishable from

the detection statistics he obtains without any eaves-

dropper. Therefore, Alice and Bob’s data will not

reveal the eavesdropper. Furthermore, since Eve has an

exact copy of Bob’s detection results, the details of the

protocol are irrelevant: the security is broken for any

classical post-processing since Eve can listen to the

classical channel and perform the same post-processing

on her copy of the detection results. Therefore, the

challenge in a detector control attack is to find a way

to make arbitrary detection events in Bob’s measure-

ment device, given that the detectors are accessible in

the linear mode.

If the detectors are gated, it may be possible to

access them in the linear mode simply by sending the

bright states after the gate [26]. Otherwise it might be

necessary to blind the detectors, either with continuous

illumination [24,25] or different types of modulated

blinding [25,28].

Regardless of how the linear mode is obtained, the

detectors have similar characteristics and have two

important parameters: Pnever is the maximum trigger

pulse power which never causes a click in any detector,

and Palways is the minimum trigger pulse power which

always causes a click in an arbitrary detector. For

BB84 [1], SARG04 [31] and decoy-protocols [34–36]

the requirement for perfect detector control attacks is

given by [24]

Palways 5 2Pnever: ð1Þ

Note that both Pnever and Palways seem to increase with

higher blinding illumination [24].

3. Differential-phase-shift

The upper right of Figure 2 shows Bob’s measurement

device in the DPS protocol [37,38], consisting of an

unbalanced Mach–Zehnder interferometer and one

detector for each bit value. The length difference of

the arms in the interferometer matches the time

difference between two adjacent pulses sent by Alice.

Alice sends a train of coherent pulses and uses the

phase difference between two adjacent pulses to encode

the two different bit values: 0 phase difference corre-

sponds to the bit value 0 and � phase difference

corresponds to the bit value 1.

For the DPS protocol, Eve’s faked-state generator

(FSG) is simply a copy of Alice’s optical scheme, but

the coherent pulses are brighter with amplitude Palways.

As we will see, the requirement for the detection

thresholds is the same as for the BB84 family of

protocols, given by Equation (1). Assuming suitable

detection thresholds, an arbitrary detector at Bob in

slot k can be triggered by selecting the phase difference

’k� ’k�1:

’k � ’k�1 ¼

ðNþ 1=2Þp causes a vacuum event,

2Np causes a click in D0,

ð2Nþ 1Þp causes a click in D1,

8

>

<

>

:

where N is an integer (see Figure 2). Since Palways/2

hits each detector for vacuum events, the requirement

for perfect eavesdropping is given by Equation (1).

Bob

D1

DN

GSFs’evEecilA

Eve

D1

DK

Bob

Click!Click!

Figure 1. Scheme of a detector control attack: Eve measures the states from Alice using a copy of Bob’s measurement device
(Bob0) to obtain a detection event. She then uses a faked-state generator (FSG) [42] to generate a bright pulse tailored to cause
the same detection event in Bob. (The color version of this figure is included in the online version of the journal.)
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If Bob accepts at least two vacuum events between

every detection event, for instance due to low trans-

mission in the quantum channel or detector deadtime,

Eve can relax the requirement (1) further. Then she

does not send a train of pulses, but rather for each

detection event she sends two pulses with the appro-

priate phase difference. Then Palways/4 hits the detec-

tors in the slots before and after the detection event.

If blinding is necessary, one can use a blinding light

source with a coherence length less than the length

difference of the interferometer arms to illuminate both

detectors equally.

4. Coherent-one-way

The upper right of Figure 3 shows Bob’s measurement

device in the COW protocol [39,40], consisting of a

fiber-optic coupler or a beam-splitter with splitting

ratio tB : (1� tB), followed by a detector DB to generate

the secret key. The other output of the fiber-optic

coupler leads to an unbalanced interferometer identical

to the one in the DPS protocol. It has two monitoring

detectors DM1 and DM2 to check for eavesdropping, by

checking the coherence of adjacent pulses. To generate

a key, Alice sends a train of pulses which are grouped

in pairs. In each pair, the slot absent of a pulse

determines the bit value of the key. The exact details of

the protocol are irrelevant, as long as Eve can

transparently mirror her detection events onto Bob’s

detectors.

As we will see, for perfect eavesdropping against

COW, it is necessary for Eve to obtain different trigger

pulse thresholds for the data detector DB, and the

monitoring detectors DM1 and DM2. Palways,B and

Pnever,B are the thresholds for the data detector while

Palways,M and Pnever,M are the thresholds for the

monitoring detectors.

The monitoring detectors have exactly the same

setup as for DPS, and therefore they can be controlled

as described in the previous section. However, since

only (1� tB) of the trigger pulse power enters the

interferometer of the monitoring detectors, the ampli-

tude of the pulse train must be increased to Palways,M/

(1� tB). For perfect control, it is important that the

illumination which enters the other arm does not

trigger the data detector. This requires that

tB

1� tB
Palways,M 5Pnever,B: ð2Þ

The data detector can be triggered by increasing the

amplitude of the trigger pulse to Palways,B/tB. Then

however, it is crucial that the monitoring detectors are

not triggered. To minimize the illumination on the

monitoring detectors, phase difference is set to �/2, and

the threshold requirement is given by

1� tB

tB
Palways,B 5 2Pnever,M, ð3Þ

where the factor 2 represents that the illumination is

split between the two monitoring detectors, just as the

factor appearing in Equation (1). Again, if there are at

least two vacuum events between every detection event,

the factor 2 can be replaced by 4. Furthermore, some

COW implementations use only one monitoring detec-

tor [5,43]. In that case the requirement (3) can be

relaxed even further, since most of the illumination can

be directed to the unused interferometer output during

vacuum events.

D0

D1

Eve’s detection

Eve’s pulse

Bob’s detection

Power at D1

Power at D0

-0- - 1 1 0 1 -

-

10

0 - - 1 1 0 1 - 10

Eve’s FSG Bob

0

-

-

-

0 0π/2 0 0 π/2 π/2π π 3π/2

PM
ϕ

Laser

Eve’s ϕ

Figure 2. Detector control in a DPS implementation: Eve’s FSG consists of a laser source producing a train of coherent pulses
with amplitude Palways, and a phase modulator (PM). Eve controllably causes identical detection events in Bob by an appropriate
phase ’ in each pulse. No trigger pulse is applied to the left of the diagram, nor in the first slot. (The color version of this figure is
included in the online version of the journal.)
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To see what the requirements (2) and (3) mean in

practice, they can be rewritten as

Pnever,B 4
tB

1� tB
Palways,M, ð4aÞ

Palways,B 5 2
tB

1� tB
Pnever,M: ð4bÞ

Now let us assume the reasonable values [24,25]

Pnever,M¼ 400 mW, and that Palways,M¼ 500 mW for

the monitoring detectors. Table 1 lists different con-

straints on the data detector thresholds for various

values of tB, where tB¼ 0.5 and tB¼ 0.9 have been

reported in experiments [5,40,43]. With tB close to 1,

the thresholds for the data detector must be very much

higher than for the monitoring detectors. If blinding

illumination is applied, the data detector will receive a

larger fraction of the illumination which would usually

cause higher thresholds [24] than for the monitoring

detectors. If a fiber-optic coupler is used, Eve may

increase the threshold difference even further by using

a blinding wavelength outside the working range of the

coupler, blinding the data detector even deeper.1 In the

implementations with only one monitoring detector,

Eve can control the amount of blinding illumination at

it independently from the data detector, by splitting the

blinding illumination arbitrarily between the output

ports of the interferometer. However, how much

higher thresholds it is possible to achieve for the data

detector than the monitoring detectors remains an

open question. Note that for values of tB close to 1, it

should be straightforward for Eve to trigger the data

detector while keeping the monitoring detectors silent.

Therefore, it is important to check for the absence of

clicks in the monitoring detectors.

Eve’s FSG is nearly a copy of Alice’s optical

scheme; in addition it includes a phase modulator to

control the monitoring detectors. Eve emits a train of

coherent pulses with amplitude Palways,M/(1� tB). To

make the data detector click, the amplitude is increased

Bob’s detection - B - - - -B B B BM2

M2

Eve’s pulse

DM2

M2

DM1

DB

(1 − tB)

BobEve’s FSG

tB

0

M1

M1- -B - B BB -B-
0 0 π/2 π/20 0-Eve’s ϕ π/2 π/2 03π/2

Power at DM1

Power at DM2

Power at DB

B,M1

B,M1Eve’s detection
π

Laser IM
ϕ

PM

Figure 3. Detector control in a COW implementation: Eve’s FSG consists of a laser source producing a train of coherent pulses,
an intensity modulator (IM) and a phase modulator (PM). The lower part of the figure shows an example of detector control,
where the system parameters are assumed to be tB¼ 0.5, Pnever,M¼ 400 mW, Palways,M¼ 500mW, Pnever,B¼ 600mW and
Palways,B¼ 750 mW. The dashed lines in the diagram are the detector thresholds. Eve controllably causes identical detection events
in Bob by an appropriate phase ’ and amplitude in each pulse. The trigger pulse amplitude is 2Palways,M¼ 1000 mW, and is
increased to 2Palways,B¼ 1500mW to trigger the data detector. No trigger pulse is applied to the left of the diagram, nor in the first
slot. (The color version of this figure is included in the online version of the journal.)

Table 1. Data detector thresholds for
various values of tB, given by
Equation (4) for Pnever,M¼ 400 mW and
Palways,M¼ 500 mW.

tB Pnever,B4 Palways,B5

0.5 500mW 800 mW
0.8 2000mW 3200 mW
0.9 4500mW 7200 mW
0.95 9500mW 15,200 mW
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to Palways,B/tB. One of the monitoring detectors in slot

k can be triggered by selecting the phase difference

’k� ’k�1:

’k � ’k�1 ¼

ðNþ 1=2Þp causes a vacuum event,

2Np causes a click in DM2,

ð2Nþ 1Þp causes a click in DM1,

8

>

<

>

:

where N is an integer. Since the data detector and the

monitoring detectors are controlled independently, it is

straightforward to cause a simultaneous click in the

data detector and one of the monitoring detectors.

Figure 3 shows Eve’s FSG, and an example of detector

control.

5. Discussion and conclusion

We have derived the requirements (1) and (4) for a

perfect attack on DPS and COW assuming that Eve

must introduce a click deterministically in Bob.

However, if the line between Alice and Bob is lossy,

Eve might place her Bob0 closer to Alice, and receive

more detections than Bob would expect. To simulate

this loss, instead of applying Palways, Eve can reduce

the power in the trigger pulses to a level which triggers

the detector with a probability equal to the expected

transmittance. This relaxes the requirements (1) and

(4). The requirements might be further relaxed by

combining the blinding attacks with other attacks on

the respective protocols [44,45].

The detector threshold requirement (1) has been

fulfilled with a large margin for all the detectors that

we have tested in the linear mode [23–28]. Therefore,

the DPS protocol is obviously vulnerable to the bright

illumination attack. For the COW protocol, the

requirements (4) on the detector thresholds depend

on the splitting ratio between the data and monitoring

detectors. Routing more light to the data detector

increases the required difference in detection thresh-

olds. It remains an open question for which splitting

ratios suitable detector thresholds can be obtained.

However, it seems that the bright illumination attacks

represent a significant threat to the security of the

COW protocol, and all subsequent implementations

should be investigated thoroughly.

While several countermeasures have been proposed

[23–27,29], none of them have been proved secure [30]

to our knowledge. The same countermeasures should

apply to the distributed-phase-reference protocols. A

frequently mentioned countermeasure is a power meter

at Bob’s entrance. As long as this countermeasure has

not been proven secure, it has to be considered

insufficient [25,30]. Nevertheless, it makes life harder

for Eve.

We have shown that distributed-phase-reference

protocols DPS and COW are vulnerable to bright

tailored illumination attacks. This emphasizes the

generality of these attacks, and demonstrates the

importance of scrutinizing all implementations and

protocols thoroughly, as this is a vital step for

obtaining suitable practical security for QKD.
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Note

1. This can easily be countered with a wavelength filter at
Bob’s entrance. However, any extra optical component
added to Bob increases photon loss and thus reduces the
key generation rate and maximum communication
distance.
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Characterizing the physical channel and calibrating the cryptosystem hardware are prerequisites
for establishing a quantum channel for quantum key distribution (QKD). Moreover, an inappro-
priately implemented calibration routine can open a fatal security loophole. We propose and ex-
perimentally demonstrate a method to induce a large temporal detector efficiency mismatch in a
commercial QKD system by deceiving a channel length calibration routine. We then devise an
optimal and realistic strategy using faked states to break the security of the cryptosystem. A fix for
this loophole is also suggested.

PACS numbers: 03.67.Hk, 03.67.Dd, 03.67.Ac, 42.50.Ex

Quantum key distribution (QKD) offers uncondition-
ally secure communication as eavesdropping disturbs the
transmitted quantum states, which in principle leads to
the discovery of the eavesdropper Eve [1]. However,
practical QKD implementations may suffer from techno-
logical and protocol-operational imperfections that Eve
could exploit in order to remain concealed [2, 3].

Until now, a variety of eavesdropping strategies have
utilized differences between the theoretical model and the
practical implementation, arising from (technical) im-
perfections or deficiencies of the components. Ranging
from photon number splitting and Trojan-horse, to leak-
age of information in a side channel, time-shifting and
phase-remapping, several attacks have been proposed
and experimentally demonstrated [4–8]. Recently, proof-
of-principle attacks [9–11] based on the concept of faked
states [12] have been presented. Eve targets imperfec-
tions of avalanche photodiode (APD) based single-photon
detectors [13] that allow her to control them remotely.

Another important aspect of QKD security not yet in-
vestigated, however, is the calibration of the devices. A
QKD protocol requires a classical and a quantum chan-
nel; while the former must be authenticated, the latter
is merely required to preserve certain properties of the
quantum signals [2, 14]. The establishment of the quan-
tum channel remains an implicit assumption in security
proofs: channel characterization (e.g. channel length)
and calibration of the cryptosystem hardware, especially
the steps involving two-party communication, haven’t yet
been taken into account. As we show, the calibration of
the QKD devices must be carefully implemented, other-
wise it is prone to hacks that may strengthen existing, or
create new eavesdropping opportunities for Eve.

In this Letter, we propose and experimentally demon-
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FIG. 1. Typical detection system in a Mach-Zehnder interfer-
ometer based QKD implementation: The bit and basis choices
of Alice and Bob (phases ϕAlice and ϕBob) determine the inter-
ference result at the 50:50 beam splitter (BS), or which of the
two detectors D0 or D1 would click. It is thus crucial that D0
and D1 are indistinguishable to the outside world (i.e. Eve).
If gated mode APDs are employed, the detector control board
ensures that the activation of D0 and D1 (via voltage pulses
V0(t) and V1(t)) happens almost simultaneously, to nullify any
existing temporal efficiency mismatch.

strate the hacking of a vital calibration sequence during
the establishment of the quantum channel in the com-
mercial QKD system Clavis2 from ID Quantique [15].
Eve induces a parameter mismatch [16] between the de-
tectors that can break the security of the QKD system.
Specifically, she causes a temporal separation of the or-
der of 450 ps of the detection efficiencies by deceiving
the detection system, shown in Fig. 1. This allows her
to control Bob’s detection outcomes using time, a pa-
rameter already shown to be instrumental in applying
a time-shift attack (TSA) [7]. Alternatively, she could
launch a faked-state attack (FSA) [16] for which we cal-
culate the quantum bit error rate (QBER) under realistic
conditions. Since FSA is an intercept-resend attack, Eve
has full information-theoretic knowledge about the key
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Eve, represents the applied modulation. (b) Timeline for a
cycle of the hacked LLM. Vπ: PM voltage for a π phase shift.

as long as Alice and Bob accept the QBER at the given
channel transmission T , and do not abort key genera-
tion [17]. Constricting our FSA to match the raw key
rate expected by Bob and Alice, i.e. maintaining T at
nearly the exact pre-attack level, we find that the secu-
rity of the system is fully compromised. Our hack has
wide implications: most practical QKD schemes based
on gated APDs, in both plug-and-play and one-way con-
figurations [19–21], need to perform channel characteri-
zation and hardware calibration regularly. A careful im-
plementation of these steps is required to avoid leaving
inadvertent backdoors for Eve.

The optical setup of Clavis2 is based on the plug-
and-play QKD scheme [15, 19]. An asymmetric Mach-
Zehnder interferometer operates in a double pass over the
quantum channel by using a Faraday mirror; see Fig. 2(a)
without Eve. The interference of the paths taken by two
pulses travelling from Bob to Alice and back is deter-
mined by their relative phase modulation (ϕBob−ϕAlice),
and forms the principle for encoding the key. Any bire-
fringence effects of the quantum channel are passively
compensated. As a prerequisite to the key exchange,
Clavis2 calibrates its detectors in time via a sequence
named Line Length Measurement (LLM). Bob emits a
pair of bright pulses and applies a series of detector gates
around an initial estimate of their return. The timing
of the gates is electronically scanned (while monitoring
detector clicks) to refine the estimation of the channel
length and relative delay between the time of arrival of
the pulses at D0 and D1. Alice keeps her phase mod-
ulator (PM) switched off, while Bob applies a uniform
phase of π/2 to one of the incoming pulses. Therefore,
both detectors are equally illuminated and their detection

efficiencies, denoted by η0(t) and η1(t), can be resolved
in time. Any existing mismatch can thus be minimized
by changing the gate-activation times (see Fig. 1).

However, the calibration routine does not always suc-
ceed; as reported in [7], a high detector efficiency mis-
match (DEM) is sometimes observed after a normal run
of LLM. For example, we have noticed a temporal mis-
match as high as 400 ps in Clavis2. This physical limita-
tion of the system – arising due to fast and uncontrollable
fluctuations in the quantum channel or electromagnetic
interference in the detection circuits – is the vulnerabil-
ity that the TSA exploits. However, the attack has some
limitations: it is applicable only when the temporal mis-
match happens to exceed a certain threshold value, which
is merely 4% of all the instances [7]. Also, Eve can nei-
ther control the mismatch (as it occurs probabilistically),
nor extract its value (as it is not revealed publicly).

We exploit a weakness of the calibration routine to
induce a large and deterministic DEM without needing
to extract any information from Bob. As depicted in
Fig. 2(a), Eve installs her equipment in the quantum
channel such that the laser pulse pair coming out of Bob’s
short and long arm passes through her PM. Eve’s modu-
lation pattern is such that a rising edge in the PM volt-
age flips the phase in the second (long arm) optical pulse
from −π/2 to π/2, as shown in Fig. 2(b). As a result of
this hack, when the pulse pair interferes at Bob’s 50:50
beam splitter, the two temporal halves have a relative
phase difference (ϕBob − ϕEve) of π and 0, respectively.
This implies that photons from the first (second) half of
the interfering pulses yield clicks in D1 (D0) determin-
istically. As the LLM localizes the detection efficiency
peak corresponding to the optical power peak, an arti-
ficial temporal displacement in the detector efficiencies
is induced. An inverse displacement can be obtained by
simply inverting the polarity of Eve’s phase modulation.

In the supplementary section [22], we describe a proof-
of-principle experiment to deceive the calibration routine.
With this setup, we record the temporal separation ∆01,
i.e. the difference between the delays for electronically
gating D0 and D1, for several runs of LLM. Relative to
the statistics from the normal runs (denoted by ∆noEve

01 ),
the hacked runs yield an average shift, ∆Eve

01 − ∆noEve
01 =

459 ps with a standard deviation of 105 ps. Figure 3
shows the detection efficiencies η0(t) and η1(t) (mea-
surement method explained in [22]) for the normal and
hacked cases. It also provides a quantitative comparison
between the usual and induced mismatch. Note that a
larger mismatch can be obtained by modifying the shape
of laser pulses coming from Bob.

After inducing this substantial efficiency mismatch,
Eve can use an intercept-resend strategy employing
‘faked states’ [12] to impose her will upon Bob (and Al-
ice). Compared to her intercepted measurements, she
prepares the opposite bit value in the opposite basis and
sends it with such a timing that the detection of the op-
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posite bit value is suppressed due to negligible detection
efficiency. As an example, assume that Eve measures bit
0 in the Z basis [in a phase-coded scheme, measuring in Z
(X) basis ⇔ applying ϕ = 0 (π/2)]. Then, she resends
bit 1 in the X basis, timed to be detected at t = t0 (see
Fig. 3), where D1 is almost blind. Using the numerical
data on the induced mismatch, Eq. 3 from [16] yields a
QBER < 0.5% if the FSA is launched at times t0 and t1
where the efficiency mismatch is high.

However, it can be observed that the detection proba-
bilities for D0 and D1 are quite low in this case. A con-
siderable decrease in the rate of detection events in Bob
could ensue an alarm. Also, the (relatively increased)
dark counts would add significantly to the QBER. In fact,
Eve needs to match the channel transmission T that Alice
and Bob expect, without exceeding the QBER threshold
at which they abort key generation [17]. Experimentally,
we find that the abort threshold depends on the channel
loss seen by Clavis2; for an optical loss of 1–6 dB (corre-
sponding to 0.79 > T > 0.25), it lies between 5.94–8.26%.

Eve solves these problems by increasing the mean
photon number of her faked states. To evaluate her
QBER, we elaborate the approach of [16] by general-
izing table I from this reference. Our attack strat-
egy, carefully accounting for all the involved factors,
is summarized in Table I. For instance, in the first
row we replace the probability of detection η0(t0)/2
by 1 − exp (−µ0η0(t0)/2) for a coherent-state pulse of
mean photon number µ0 impinging on Bob’s detectors
at time t0. Including the effect of the dark counts into
this expression, Bob’s probability to register 0 becomes
q0 = d0 + (1 − d0) (1 − exp (−µ0η0(t0)/2)), where d0 is
the dark count probability in detector D0. A row for
double clicks, i.e. simultaneous detection events in D0
and D1, is added for every (re-sent) state.

Due to the FSA, the D0/1 click probability at time t
no longer depends solely upon η0/1(t). Summing over all
the states sent by Alice (by extending Table I), the total

→Eve Eve→ Bob’s result Detection probability

Z, 0 X, 1, µ0, t0 0 q0 = d0 + (1− d0)×
(1− exp (−µ0η0(t0)/2))

1 q1 = d1 + (1− d1)×
(1− exp (−µ0η1(t0)/2))

0 ∩ 1 q0q1

loss 1− (q0 + q1 − q0q1)

X, 0 Z, 1, µ0, t0 0 r0 = d0

1 r1 = d1 + (1− d1)×
(1− exp (−µ0η1(t0)))

0 ∩ 1 r0r1

loss 1− (r0 + r1 − r0r1)

X, 1 Z, 0, µ1, t1 0 s0 = d0 + (1− d0)×
(1− exp (−µ1η0(t1)))

1 s1 = d1

0 ∩ 1 s0s1

loss 1− (s0 + s1 − s0s1)

TABLE I. Faked-state attack, given that Alice prepared bit
0 in the Z basis and that Bob measured in the Z basis (only
matching basis at Alice and Bob remains after sifting). The
first column contains the basis chosen by Eve and her mea-
surement result. The second column shows parameters of
the faked state resent by Eve: basis, bit, mean photon num-
ber, timing. The third column shows Bob’s measurement re-
sult; 0 ∩ 1 denotes a double click. The last column shows the
corresponding click probabilities (ignoring possible superlin-
earity effect in gated detectors [18]). Note: The first result
(→ Eve ≡ Z, 0) is twice as likely to occur as the other two.

detection probabilities in D0 and D1 when the attack is
launched at specific times t0 and t1 are

p0(µ0, µ1) = 0.75 + 0.25d − 0.25(1 − d)×
(e−0.5µ0η00 + e−0.5µ1η01 + e−µ1η01) , (1)

p1(µ0, µ1) = 0.75 + 0.25d − 0.25(1 − d)×
(e−0.5µ0η10 + e−0.5µ1η11 + e−µ0η10) . (2)

Here ηjk = ηj(tk) with j, k ∈ {0, 1} and d = mean (d0, d1)
are used to simplify the expressions. Similarly, one can
compute the expression for p0∩1, the total double-click
probability. Eve’s error probability, the arrival probabil-
ity of the optical signals in Bob, and the QBER are

perror(µ0, µ1) = 0.75 + 0.25d − 0.5p0∩1 − 0.125× (3)

(1 − d)
(
e−µ0η10 + 2e−0.5µ0η10 + e−µ1η01 + 2e−0.5µ1η01

)
,

parrive(µ0, µ1) = p0 + p1 − p0∩1 , (4)

QBER(µ0, µ1) = perror(µ0, µ1)/parrive(µ0, µ1) . (5)

Here double clicks are assumed to be assigned a random
bit value by Bob [25], causing an error in half the cases.

If Alice and Bob are connected back-to-back (channel
transmission T ≈ 1), the click probabilities in Bob should
be slightly less than half of the peak values in Fig. 3. This
is owing to optical losses (>∼ 3 dB) in Bob’s apparatus.



4

p0 (click probability in D0)
0.02 0.03 0.04

p
1
(c

li
ck

 p
ro

b
ab

il
it

y
 i

n
 D

1
)

0.01

0.02

0.03
8%9%

10%

6%

5%

7%

0.01
0.

9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

D
ec

re
as

in
g

ch
an

ne
l

tra
ns

m
is
si
on

T

FIG. 4. Minimum QBER versus click probabilities in D0
and D1: Eve minimizes the error with a suitable choice of
the mean photon number of the faked states (for this plot,
1 < µ0 < 100 and 21 < µ1 < 120 at Bob’s detectors). The
thick shaded line indicates Bob’s detection probabilities. The
QBER introduced by Eve stays below 7% for T >∼ 0.25.

Eve’s constraints can now be formalized as: starting in
the vicinity of p0 = 0.038 and p1 = 0.032, not only does
she have to match Bob’s expected detection rate for any
given T < 1, but also keep the resultant QBER below the
threshold at which Clavis2 aborts the key exchange. We
assume Eve detects photons at Alice’s exit using a perfect
apparatus, and resends perfectly aligned faked states.

Substituting t1 = −1.32 ns, t0 = 1.90 ns (marked in
Fig. 3) and d = 2.4 × 10−4 in Eqns. 1–5, Eve collects
tuples [p0, p1, QBER] by varying µ0 and µ1 in a suitable
range. Out of all tuples that feature the same detection
probabilities (arising from different combinations of µ0

and µ1), Eve chooses the one having the lowest QBER.
A contour plot in Fig. 4 displays this minimized error
minµ0,µ1 QBER((µ0, µ1)| (p0, p1)). The thick shaded line
shows that for T > 0.25, Eve not only maintains the
detection rates within 5% of Bob’s expected values, but
also keeps the QBER below 7% [? ]; thus breaking the
security of the system. Note that the simulation assumes
a lossless Eve, but in principle she can cover loss from
her realistic detection apparatus by increasing µ0 and µ1

further and/or including t0 and t1 in the minimization.
To counter this hack, Bob should randomly apply a

phase of 0 or π (instead of π/2 uniformly) while perform-
ing LLM. This modification is implementable in software
and has already been proposed to ID Quantique. More
generally, a method to shield QKD systems from attacks
that exploit DEM is described in Ref. [23].

In conclusion, we report a proof-of-principle experi-
ment to induce a large detector efficiency mismatch in
a commercial QKD system by deceiving a vital calibra-
tion routine. An optimized faked-state attack on such a
compromised system would not alarm Alice and Bob as
it would introduce a QBER < 7% for a large range of
expected channel transmissions. Thus, the overall secu-

rity of the system is broken. With initiatives for stan-
dardizing QKD [24] underway, we believe this report is
timely and shall facilitate elevating the security of prac-
tical QKD systems.
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Device calibration impacts security of quantum key distribution: Technical appendix

trigger IN
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FIG. 5. Eve’s implementation (mAlice) by modifying Alice’s module: The onboard pulser driving the phase modulator (PM)
is disconnected, and the PM itself is positioned before the 23.5 km delay loops (DLs). The trigger conditioner circuit allows
(prevents) the pulse & delay generator to be triggered by the short arm (long arm) optical pulses. Newly added components
to the original Alice module are labeled in italic. VOA: variable optical attenuator, FM: Faraday mirror.

Implementation of the hack: Here, we explain our experimental implementation of the scheme outlined in the
Letter for deceiving Line Length Measurement (LLM), the calibration routine of the Clavis2 QKD system [15]. For
this purpose, we rig the module of Alice as shown in Fig. 5. From now on, we call this manipulated device mAlice. An
electronic tap placed on the classical detector (normally used by Alice for measuring the incoming optical power [5])
is conditioned appropriately with a homemade circuit. The output of this circuit provides the trigger for the pulse &
delay generator (PDG, Highland Technology P400), which essentially drives the phase modulator (PM) in mAlice.

For experimental convenience, we also change the settings in the Clavis2 firmware (Bob’s EEPROM specifically)
such that during the execution of LLM, ϕBob = 0 is applied instead of the usual π/2. This relaxes the requirement on
Eve’s modulation pattern: in comparison to the waveform in Fig. 2(b) in the Letter, the PDG needs to switch simply
from 0 to Vπ through the center of the optical pulse. This is in principle equivalent to the scheme in Fig. 2(b) in the
Letter, while easier to implement. In other words, it does not affect a full implementation of Eve. Normally, Alice
applies the phase modulation in a double pass by making use of the Faraday mirror. However, the PM in mAlice is
shifted closer to Alice’s entrance (i.e. before the delay loops) to enable a precise synchronization of the PDG. To ensure
that the photons passing through the PM (in a single pass now) pick up the requisite ‘π’ modulation, a polarization
controller is deployed before the PM.

Finally, the synchronization of the rising edge of Eve’s modulation to the center of the optical pulse is performed by
scanning the delay in the PDG (in steps of 5 ps) while monitoring the interference visibility [15]. As Eve’s modulation
flips the phase of the optical pulse through the center, the visibility reduces to zero. The corresponding delay setting
of the PDG can then be used to induce the temporal efficiency mismatch between Bob’s detectors D0 and D1, during
the execution of LLM.

We emphasize that the mAlice module serves as a proof-of-principle implementation only for inducing the detector
efficiency mismatch during the LLM. It should not be confused with Eve’s intercept or resend modules, needed in
the subsequent faked-state attack. Finally, note that Eve is free to modify Bob’s pulses or replace them by her
suitably-prepared pulses, and thus effectively control the amount of detection efficiency mismatch that can be induced.

Measurement of efficiency curves: Detection efficiencies η0(t) and η1(t) are estimated at single-photon level by
scanning the detector gates in steps of 20 ps with an external laser (optical pulse-width ∼ 200 ps). We average the
click probability per gate and subtract d0/1 (the dark count rate in D0/1) from it. This gives a more accurate estimate
of the efficiencies, especially in the flanks (see Fig. 3 in the Letter).
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We introduce the concept of a superlinear threshold detector, a detector that has a higher prob-
ability to detect multiple photons if it receives them simultaneously rather than at separate times.
Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping
the full secret key without being revealed. Here, we generalize the detector control attack, and
analyze how it performs against quantum key distribution systems with moderately superlinear de-
tectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier
published data, and gated avalanche photodiode detectors based on our own measurements. The
analysis shows that quantum key distribution systems using detector(s) of either type can be vul-
nerable to eavesdropping. The avalanche photodiode detector becomes superlinear towards the end
of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would
allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack
would be virtually impossible to catch with an optical power meter at the receiver entrance.

I. INTRODUCTION

Single photon detectors [1] can be regarded as essen-
tial parts of quantum information processing hardware,
and are certainly crucial components in quantum key dis-
tribution (QKD) systems [2–7]. In QKD, the commu-
nicating parties Alice and Bob exploit the properties of
quantum mechanics to reveal any eavesdropping attempt
by the eavesdropper Eve. The security of QKD has been
proven for perfect devices [4, 5]. However, when the secu-
rity of QKD is to be proven for practical systems [8–16],
it is necessary to construct models based on assumptions
about the practical devices, and hence also about the
single photon detectors.

With a few exceptions [17, 18], most single photon de-
tectors suitable for QKD systems are threshold detectors
that cannot resolve the number of photons in a pulse.
They rather have a binary response distinguishing be-
tween zero, and ‘one or more’ photons, where a detection
event is often referred to as a “click”. Threshold detec-
tors are usually characterized by their quantum efficiency
η, which is the probability to detect a single photon.
For multiphoton pulses, a very common assumption is
that each photon within the pulse is detected individu-
ally with probability η. Then, the detection probability
of a n-photon Fock state can be expressed as

pdet(n) = 1 − (1 − η)n. (1)

We refer to threshold detectors with a multiphoton detec-
tion probability higher than the one given by Eq. (1) as

∗ lars.lydersen@iet.ntnu.no

superlinear threshold detectors. A superlinear threshold
detector has a larger probability to detect multiple pho-
tons if it receives them nearly simultaneously, than if it
receives each of the photons separately at different times.
This effect is well known in multiphoton absorption by
atoms [19], where the multiphoton absorption rate can
be much higher for chaotic light than for laser light with
the same mean intensity. Meanwhile for threshold detec-
tors, superlinear response may also originate from how
the entire device converts individual excitations into the
macroscopic detection event.

The photon number of a coherent state follows a Pois-
son distribution with probability pn = µne−µ/n!, where
µ is the mean photon number. Therefore, if the detection
probability of a n-photon Fock state is given by Eq. (1),
a coherent state with mean photon number µ is detected
with probability

pdet =

∞∑

n=0

µne−µ

n!
pdet(n) = 1 − e−µη. (2)

Note that for a coherent state with mean photon number
µ, a superlinear threshold detector with quantum effi-
ciency η will have a higher detection probability than
the one given by Eq. (2).

Insufficient models of single photon detectors have
caused numerous security loopholes [15, 20–30] in QKD.
For instance, the time-shift attack [21] based on detector
efficiency mismatch [20] has been shown to break the se-
curity of a commercial QKD system [24]. More recently,
the detector control attack [25–30] allows the eavesdrop-
per to capture the full key without revealing her presence
(via errors in the key). Specifically, the attack intro-
duces zero quantum bit error rate (QBER). Furthermore,
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this attack which is based on bright illumination is im-
plementable with current technology. Two commercial
QKD systems were shown to be vulnerable to the attack
[25–27], and a full eavesdropper has been implemented
to capture the full key of an experimental QKD system
under realistic conditions [29]. However, the power level
(more than 500 µW) of the eavesdropper’s illumination
has led to discussions whether an optical power meter at
the entrance of Bob can be used to detect these attacks
[31–34].

In this paper we propose and analyze an attack against
QKD systems with superlinear detectors (Sec. II). Note
that the previously published detector control attack [25]
is based on an extreme superlinear behavior of the detec-
tors, and can therefore be considered a special case of
the “imperfect” detector control attack presented here.
Then we discuss how the attack would perform against
superconducting single photon detectors [35, 36], which
have been reported to exhibit superlinear behavior (Sec-
tion III). In Sec. IV we show that APD-based gated
detectors have a substantial superlinear response at the
end of the gate. The superlinear behavior at the end
of the gate allows eavesdropping with very faint trigger
pulses [25, 32]. This faint after-gate attack will be virtu-
ally impossible to catch with an optical power meter at
the entrance of Bob. At least one security proof covers
QKD systems with superlinear detectors [16]. In Sec. V
we show how the detector control attack relates to the
security proof, and discuss possible countermeasures. Fi-
nally, we conclude in Sec. VI.

II. THEORY OF SUPERLINEAR DETECTOR
CONTROL

The core of the previously proposed detector control
attacks is the following [25]: in the Bennett-Brassard
1984 (BB84) [2] family of protocols, Eve uses a random
basis to measure the quantum state from Alice. Then
she resends her measurement result, not as a single pho-
ton, but rather as a bright pulse, called a trigger pulse,
with a carefully selected optical power. Then, if Eve uses
Bob’s measurement basis, her trigger pulse is always de-
tected by Bob. On the contrary, if Eve uses a basis not
matching Bob’s to measure the quantum state from Alice,
her trigger pulse is never detected. This is possible be-
cause Bob’s detectors are very superlinear: for less than
a factor of two (3 dB) increase in trigger pulse power, the
detection probability shoots from 0 to 100%. Since Eve
uses the correct basis only half of the time, the total loss
between Alice and Bob is 3 dB. For the differential-phase-
shift protocol [37, 38] there is no basis choice, so the same
factor of two (3 dB) superlinearity allows eavesdropping
without extra loss [30]. The coherent one-way protocol
[39, 40] is also vulnerable to the detector control attacks
[30], but requires a more strict relationship between the
superlinearities of the detectors in the system.

The previously proposed detector control attacks allow

Eve to capture the full secret key without introducing any
QBER. However, Alice and Bob usually tolerate a non-
zero QBER (typically less than 11%). Therefore, Eve
might introduce a small QBER without getting caught.
What if the superlinearity of the detector is such that
when Eve selects the right basis, the trigger pulse is de-
tected with a high probability, while when Eve selects the
wrong basis, the trigger pulse is detected with a low prob-
ability? One can immediately identify two consequences
of this “imperfect” detector control attack: the non-unity
detection probability when Eve uses the right basis will
contribute extra to the loss. On the other hand, the non-
zero detection probability when Eve uses the wrong basis
will introduce a non-zero QBER.

We will here consider an active basis choice BB84 im-
plementation using two detectors. In a passive basis
choice BB84 implementation [41], Eve’s trigger pulse will
strike the detectors in both bases simultaneously for each
bit. For this case, the QBER introduced by the attack
depends on how Bob handles simultaneous clicks in both
bases. Assume that Bob assigns a random bit value to
these events. Then, if the probability for simultaneous
clicks in both bases is non-zero, the QBER introduced
by a “imperfect” detector control attack will be higher
in a passive basis choice implementation than in an ac-
tive basis choice implementation. In any case, for passive
basis choice implementations, the theoretical QBER de-
rived below can be used as a lower bound.

To calculate the QBER caused by this attack, let pf,i
be the detection probability in detector i for the trigger
pulse with full power. Likewise, let ph,i be the detection
probability at detector i with half the power. We assume
Eve resends the same power regardless of her detected
bit value, that double clicks are assigned to a random
bit value [42], and that Eve selects Bob’s measurement
basis with probability 1/2. When Eve resends in the
wrong basis and Bob has a detection, the bit value will
be erroneous with probability 1/2. Therefore, the QBER
caused by the “imperfect” detector control attack is given
by

QBER =
1

2

Bob detects and Eve used wrong basis

Bob has a detection

=
ph,0 + ph,1 − ph,0ph,1

pf,0 + pf,1 + 2(ph,0 + ph,1 − ph,0ph,1)
,

(3)

where dark counts have been omitted. Errors originating
from dark counts would add to the errors caused by the
attack. However, in a good detector design the amount
of errors from dark counts is minimized. Since we require
the eavesdropper to reproduce the detection probability
from normal operating conditions, the dark count prob-
ability would be minimized under attack as well. A high
dark count probability, and thus a high error rate with-
out the eavesdropper would leave the attack less room
for errors to be introduced. However, an equivalent re-
striction on the attack is easier obtained by lowering the
acceptance threshold for the QBER. Therefore, our anal-
yses is limited to the QBER introduced by the attack,
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and dark counts are omitted. Assuming that both de-
tectors have equal detection probabilities, pf,i = pf and
ph,i = ph, Eq. (3) simplifies to

QBER =
2ph − p2h

2pf + 2(2ph − p2h)
. (4)

As discussed above, the perfect detector control attack
introduces 3 dB loss when applied against BB84 QKD
systems with active basis choice in Bob’s implementation,
because Eve only selects the correct basis half of the time.
If mini pf,i < 1, the attack will cause an even higher loss.
On the other hand, maxi ph,i > 0 will reduce the loss
introduced by the attack. Therefore, the transmittance
T when an “imperfect” detector control attack is applied
against a BB84 QKD system with active basis choice is
given by

T =
1

4
(pf,0 + pf,1) +

1

2
(ph,0 + ph,1 − ph,0ph,1) . (5)

Note that T refers to the transmittance between Eve and
Bob. If Eve uses imperfect detectors, this will add to the
total loss observed by Alice and Bob. For the remainder
of the paper, we simply consider Eve to use perfect de-
tectors. Since Eve can place her detectors close to Alice,
and she can use detectors with almost unity detection
efficiency [18], this is an acceptable assumption. If both
detectors have equal probabilities, Eq. (5) simplifies to

T =
1

2
pf +

1

2

(
2ph − p2h

)
. (6)

Note that in passive implementations of Bob, such as pas-
sive basis choice in BB84 [41], or in distributed phase ref-
erence protocols [37–40], there is no 3 dB loss due to basis
choice. Therefore, the above expression for the transmit-
tance T can be considered a lower bound also for such
implementations.

In most cases, the eavesdropper can introduce sub-
stantial loss without getting noticed. With the notable
exception of transition-edge sensors [18], the quantum
efficiency of Bob’s detectors is typically about 10% at
telecom wavelengths [1]. Furthermore, an optical fiber
usually exhibits a loss of about 0.2 dB/km at 1550 nm
wavelength. Adding the loss owing to detector’s quan-
tum efficiency to the loss in the line at a typical distance
of 50 km, Alice and Bob normally observe a total loss of
20 dB, corresponding to T ∼ 0.01. In addition to this,
there is loss in the optical path inside Bob’s apparatus.
However, Eve can always adjust the power in her trig-
ger pulses to strike Bob’s detectors with a given optical
power. Therefore, by inserting her eavesdropping station
into the line close to Alice’s system, Eve has almost the
full 20 dB at her disposal. In one case, a QKD system op-
erating with loss up to 40 dB has been reported [43] (but
the actual, tolerable loss might be less because there is
no satisfactory security proof for the protocol used in
Ref. [43]). Therefore, it seems that for many QKD se-
tups, Eve can introduce loss of more than 20 dB without
being revealed from the reduction in the transmittance.
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FIG. 1. (Color online) The detection probability versus mean
photon number in the trigger pulse for the SSPD in Ref. [36],
at 1550 nm and Ib = 0.8Ic. Count rates were extracted from
Fig. 1 in Ref. [36], and divided by the pulse repetition fre-
quency of 82MHz to obtain the detection probability. The
red circled data points were used to calculate the QBER and
the transmittance from an attack.

III. SUPERLINEARITY OF
SUPERCONDUCTING SINGLE PHOTON

DETECTORS

Superconducting single photon detectors (SSPDs)
based on superconducting nanowires [35] have been used
for long-distance QKD experiments [43–47], due to their
ultra low dark count rate and timing jitter. However, the
need for cryogenic cooling to temperatures in the 2–4 K
range has prevented them from being used in commercial
QKD systems.

In SSPDs, the nanowire is cooled to the superconduct-
ing state. Then, then the nanowire is biased with a cur-
rent Ib slightly lower than the critical current Ic. Be-
cause the wire is superconducing at Ib, there is no voltage
drop over the device. A photon incident on the nanowire
can create a normally-conducting hotspot, with the ef-
fect that the whole cross-section of the nanowire becomes
normally conducting. This increases the voltage over the
device. Afterwards, the cooling restores superconductiv-
ity in the nanowire, and the current increases back to the
bias current. This dead time is usually about 10 ns. The
biasing current Ib can be adjusted for a trade-off between
high detection efficiency and low dark count rate.

Already in the first systematic investigation of the
detection efficiency of SSPDs [36], superlinear behavior
due to multiphoton absorption mechanisms was reported.
The superlinear behavior is wavelength dependent, and
is substantial at 1550 nm, which is the wavelength suit-
able for long-distance experiments. Figure 1 shows the
detection count data for 1550 nm extracted from Fig. 1
in Ref. [36], processed as detection probability (count
rate/trigger pulse rate), and plotted on a linear scale.
The SSPD was biased at Ib/Ic = 0.8. The superlinear
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behavior is suitable for eavesdropping in QKD: by in-
creasing the photon number, the detection probability
increases sharply. Using trigger pulses containing 106

photons per pulse, Eq. (4) predicts a QBER of less than
3%, and Eq. (6) predicts a transmittance T > 0.20 (as-
suming reasonable errors in extracting the numerical data
from the plot in Ref. [36]). Therefore, a QKD system us-
ing this SSPD would clearly be vulnerable to a detector
control attack.

Judging by the low detection probability at one pho-
ton per pulse for this SSPD, the QKD experiments would
use a higher bias current to get better sensitivity. Unfor-
tunately, few publications seems to report the detection
probabilities for pulses above the single photon level, es-
pecially for 1550 nm wavelength. The available literature
shows that SSPDs are less superlinear at shorter wave-
lengths [36], and also less superlinear at higher bias cur-
rents [48]. However, note that any superlinear detector
response must be handled in the security proof. There-
fore, the reported data on SSPDs [36, 48] clearly shows
that such a security proof is necessary for QKD systems
using SSPDs.

IV. SUPERLINEARITY OF GATED
APD-BASED DETECTORS

The gated APD-based detectors in the QKD system
Clavis2 by ID Quantique exhibit substantial superlinear
behavior far after the gate [27], or when blinded by bright
illumination [25, 26]. However, as pointed out before
[25, 31], the bright trigger pulses might be revealed by
an optical power meter at the entrance of Bob. Here, we
show that at the end of the gate, when the APD is biased
close to the breakdown voltage, the superlinear response
allows Eve to use very faint trigger pulses.

The detection probability during the gate was mea-
sured as follows: The gated InGaAs detectors in the
QKD system Clavis2 were run with factory settings, but
with the gating frequency reduced from 5 MHz to 98 kHz.
The reduced frequency corresponds to the factory fre-
quency with a detection in every gate, and afterpulse
blocking (forced 10 µs deadtime after detection events
to reduce dark counts) enabled. A short-pulsed laser
(see Appendix A for the pulse shape) was attenuated
to the appropriate mean photon number, and connected
directly to the fiber pigtail of each detector. Then, the
laser pulse was scanned through the gate in steps of 25 ps,
and the detection probability was recorded in each step.
The “quantum efficiency” η was measured by applying
a coherent state µ = 1, and solving η from Eq. (2). In
fact, the detector is slightly superlinear, but a coherent
state with µ = 1 [49] contains only a small fraction of
multiphoton pulses.

Once the quantum efficiency η is known, Eq. (2) can be
used to calculate the expected detection probability for a
coherent state with any mean photon number, assuming
that each photon is detected individually. Figure 2 shows
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FIG. 2. (Color online) The measured detection probability
for a coherent state with µ = 20, 40, 60 and 80, compared
to the expected detection probabilities predicted by Eq. (2).
Data points are 25 ps apart. Data for detector 0 is shown; de-
tector 1 behaved very similarly. When the mean photon num-
ber µ is increased, deviation between the expected detection
probabilities and the actual measured detection probabilities
increases, especially at the end of the gate. See also Fig. 3.

the detection probability of a coherent state for various
mean photon numbers predicted by Eq. (2), compared to
the actual detection probabilities measured in our exper-
iment.

The measurement data matches the expected detec-
tor response fairly well until the falling edge of the gate.
There, the measured detection probability becomes su-
perlinear. One possible explanation for this could be the
following: an avalanche, started by a photon in a local-
ized spot, laterally spreads over time to encompass the
entire junction area of the APD [50]. For detection events
before the falling edge of the gate, the avalanche has suf-
ficient time to spread and therefore the current reaches
the same amplitude regardless of the number of pho-
tons absorbed in the APD [17]. At the end of the gate,
an avalanche from a single photon absorption does not
have sufficient time to spread to the entire junction area,
and therefore only causes a small current insufficient of
crossing the comparator threshold. However, multiple
photon absorptions in different spots across the junction
can start multiple small avalanches that together provide
enough current to cross the comparator threshold. This is
exactly the process exploited to make photon number re-
solving APD-based detectors [17]. Avalanche spreading
assisted by secondary photons re-emitted by the APD,
has already been used to explain avalanche development
[50, 51]. Similarly, multiple photon absorptions caused
by the multiphoton pulse could speed up the avalanche
development.

For the gated APD-based detectors, the superlinear
response can be exploited in a faint version of the after-
gate attack [27]. From Eve’s perspective, the original
after-gate attack has some drawbacks. The attack may
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FIG. 3. (Color online) Detection probability at the falling
edge of the gate (at the 4 ns point in Fig. 2). For µ < 40, the
shape of the actual detection probability is clearly superlinear,
in contrast to the nearly linear expected detection probability.

cause a substantial amount of errors in the key, because
the bright pulses cause afterpulses with a random bit
value. Furthermore, in principle, an optical power meter
can be used to catch Eve’s bright pulses. Also, remov-
ing gates randomly or as a part of afterpulse blocking
(to avoid excessive dark counts) would reveal the attack
because the trigger pulses would cause clicks regardless
of the presence of a gate. Then, detection events with-
out a gate applied would indicate the presence of the
eavesdropper. Similarly, it has been noted that in the
original after-gate attack could be countered by ignoring
detection events outside the gate [33], while for this faint
after-gate attack, the detections happen within the gate
[34].

As discussed in Sec. II, having a “high” detection prob-
ability for a given trigger pulse power, and a “low” detec-
tion probability for a 3 dB dimmer trigger pulse is suit-
able for Eve’s attack. Figure 3 shows the measured and
expected detection probability at a single point at the
falling edge of the gate. For less than 40 photons per
trigger pulse, the APDs clearly exhibit superlinear re-
sponse in favor of the eavesdropper.

The detection probability curve of the detector 0 (the
results are very similar for detector 1) was used when cal-
culating QBER and transmittance from Eqs. (4) and (6).
Figure 4 shows the resulting QBER and the correspond-
ing transmittance for various mean photon numbers in
the trigger pulse, when the trigger pulse timing was opti-
mized to minimize the QBER. The data indicates that a
faint after-gate attack could cause a QBER around 13%
with a transmittance of about 0.005, corresponding to
23 dB loss (for instance, for µ = 40, pf = 0.0054 and
ph = 0.00089 at the point 4.525 ns in Fig. 2). As dis-
cussed in Sec. II, this transmittance corresponds to Bob’s
detectors having 10% quantum efficiency, a line loss cor-
responding to about 50 km of fiber and another 3 dB loss
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FIG. 4. (Color online) The minimum QBER (solid curve)
caused by trigger pulses with various mean photon number
calculated from Eq. (4) and the corresponding transmittance
(dashed curve) calculated from Eq. (6). The data contains
some noise due to fluctuations in applied power and/or fluc-
tuations in the detection efficiency.

in Bob’s apparatus, which are reasonable values.

While most QKD systems do not accept QBER above
11% [5], there are post-processing protocols which ac-
cept QBER up to 20% [52]. Also note that the QBER
introduced by the attack may be significantly lower with
yet shorter trigger pulses, since they would better resolve
the superlinear behavior at the falling edge of the gate.
A relatively wide pulse we’re using (Appendix A) arrives
at both linear and superlinear regions of the gate. There-
fore the superlinear response to it must be less than that
to a narrower pulse arriving only at the most superlinear
point in the gate.

The detectors in Clavis2 have been shown to exhibit
detection efficiency mismatch [20, 24, 53]. Therefore, in
the general case one would have to use different timings
and/or different powers depending on the bit value, to
avoid skewing the bit value distribution in the raw key.
Also, the superlinearity could be exploited in other at-
tacks, such as the faked-state attack [53, 54] and con-
ventional quantum attacks, to make them more efficient
[15].

ID Quantique has been notified about this loophole
prior to the submission of the manuscript.

V. COUNTERMEASURES AND PROOF OF
SECURITY

The security of QKD systems with arbitrary non-
linearities in Bob’s system, and therefore superlinear
threshold detectors has already been proved [16]. With-
out source imperfections and with symmetry in the two
bases, the secret key rate is given by [16]

R ≥ −h(QBER) + η(1 − h(QBER)), (7)
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FIG. 5. (Color online) Comparison of the detector control at-
tack and the bound from the security proof [16]. The region
to the left of the security bound curve (solid curve) allows
extraction a secure key. The region to the right of the de-
tector control attack curve (dashed curve) is clearly insecure,
because the attack presented in Sec. II can be applied. The
region between the curves should be assumed insecure.

where h( · ) is the binary entropy function, and η is the
smallest detection probability of a non-vacuum state. If
one further assumes that the probability to detect a mul-
tiphoton state is higher than a single photon, η is simply
the quantum efficiency (the probability to detect a single
photon).

As for the detector control attack, let us assume the
worst-case superlinearity, namely that a single photon is
detected with probability η, while a two-photon state is
detected with probability 1. Then, Eve can use trigger
pulses with two photons, and Eq. (4) simplifies to

QBER =
2η − η2

2 + 2(2η − η2)
. (8)

Figure 5 shows Eq. (7) for R = 0 and Eq. (8), com-
paring the “imperfect” detector control attack with the
bounds derived in the security proof [16]. It shows that a
sufficiently high detection probability, and thus quantum
efficiency allows extraction of secret key regardless of any
superlinear detector response. For instance, if the QBER
is 5%, a quantum efficiency η > 0.4 allows the extraction
of secret key. Note that a high quantum efficiency does
not remove the superlinear effect, but then the security
proof makes it possible to remove any knowledge Eve
could have obtained exploiting the superlinear response,
by (a large amount of) extra privacy amplification [55].

For gated systems, one possible countermeasure might
be bit-mapped gating [56]. Then, the basis selector is
used to randomize all detection events outside the center
of the gate. Therefore, trigger pulses timed at the falling
edge of the gate would cause random detections and thus
a QBER of 50%. This would reveal Eve’s presence. How-
ever, the security analysis for bit-mapped gating requires

that each photon is detected individually during the tran-
sition of the basis selector. In practice, this means that
the detectors must have a detection probability given by
Eq. (2) in the center of the gate. Figure 2 shows that
this is nearly the case. It might be possible to detect
each photon completely individually in the middle of the
gate by expanding the gate, or by shaping the applied
electrical gate appropriately.

VI. SUMMARY AND CONCLUSION

In this paper we have analyzed the security of QKD
systems using superlinear threshold detectors. The de-
tector control attack previously reported [25] is based on
very superlinear detection probability: when the ampli-
tude of the trigger pulses is increased, the detection prob-
ability sharply increases from 0 to 100%. This allows
eavesdropping the full key without causing any errors,
the only side effect is 3 dB total loss. Here, the detector
control attack is generalized to moderately superlinear
detectors by accepting a limited amount of errors in the
key, and/or accepting a higher loss. Note that in practice,
a total loss of about 20 dB may be tolerable, as discussed
in Sec. II.

Nanowire SSPDs [35] have been reported to have su-
perlinear detection probability [36]. We have shown
that by carefully selecting the trigger pulse amplitude,
an eavesdropper would introduce a QBER of less than
3% when attacking the SSPD in Ref. [36]. The total
loss caused by the eavesdropping would be less than
6 dB. Therefore, a QKD system using this detector would
clearly be insecure.

Figures 2 and 3 show that the response of the APD-
based gated detector is superlinear at the falling edge of
the gate. Therefore, it is possible to attack the gated
detectors with faint trigger pulses, with less than 120
photons per pulse. From the measurements, the attack
would cause a QBER of about 13% and about 23 dB loss.
Most QKD systems do not accept a QBER above 11%
[5], but there are post-processing protocols allowing a
QBER up to 20% [52]. Furthermore, we suspect that
both the QBER and the loss could be reduced by using
shorter trigger pulses [57]. Finally, even if the attack is
not directly applicable to some QKD systems due to the
QBER and/or loss threshold, the superlinear response
of the APD-based detector shows that ordinary security
proofs no longer apply to these systems. Therefore, these
systems must use advanced security proofs to bound and
remove Eve’s partial knowledge from the moderate su-
perlinear response.

The faint after-gate attack does not suffer from the lim-
itations of the original after-gate attack [27]. In the faint
after-gate attack, the afterpulsing is negligible. Further-
more, with less than 120 photons per pulse, the trigger
pulses should be nearly impossible to catch with an opti-
cal power meter at the entrance of Bob. Also, removing
gates randomly or due to after-pulse blocking will not
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FIG. 6. (Color online) Pulse shape of the id300 short-pulsed
laser, measured with a 45GHz optical probe on a 12.5GHz
sampling oscilloscope at a pulse repetition rate of 100 kHz.

expose the attack [27] since such trigger pulse will not
cause a click unless there is a gate present. Furthermore,
the timing of the trigger pulse detection will be very sim-
ilar to a normal detection inside the gate, and therefore
difficult to discard based on timing [33].

If the detectors have an increasing detection proba-
bility for increasing photon number, a sufficiently high
quantum efficiency makes it possible to remove Eve’s
knowledge using privacy amplification [55]. For gated
APD-based detectors, bit-mapped gating [56] can be used

if each photon is detected individually in the center of the
gate.

Quantum key distribution has been proven secure for
all future, so currently the challenge is to make a secure
implementation. We believe that weeding out loopholes
caused by the implementation is a necessary step towards
achieving practical secure QKD, and that this work is
crucial because it fully exposes the nature of the detector
control attack.
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Appendix A: Pulse shape of id300

Figure 6 shows the pulse shape of the id300 short-
pulsed laser [58]. This is the particular laser sample used
in this experiment; other samples of this laser model may
have a different pulse shape.
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We hack a commercial actively-quenched avalanche single-photon detector (PerkinElmer SPCM-
AQR) commonly used for quantum cryptography. This study complements the recent hacking of
passively-quenched and gated detectors by the same method, and thus demonstrates its generality.
Bright illumination is used to blind the detector, such that it exits single-photon detection mode
and instead operates as a mere classical photodiode. In this regime, the detector clicks controllably
if a bright pulse is applied above a classical sensitivity threshold, allowing for an attack on quantum
cryptography that eavesdrops the full secret key. The SPCM-AQR detector model exhibits three
redundant blinding mechanisms: (1) overload of an opamp in the bias control circuit, (2) thermal
blinding of the APD itself, and (3) overload of the DC/DC converter biasing the APD. This confirms
that multiple loopholes may be left open if one does not examine closely non-idealities in components
used for quantum cryptography implementations. To reach the security envisioned by theoretical
proofs, this practice must change.

Over the past twenty years, quantum key distribution
(QKD) has progressed from a tabletop demonstration to
commercially available systems [1], with secure key ex-
change demonstrated up to 144 km in free-space [2] and
250 km in optical fibers [3]. Security of these cryptosys-
tems is based on the impossibility, in principle, to reliably
copy an a priori unknown quantum state, as accounted
for by the no-cloning theorem [4]. However, security also
relies on the assumption that the optical and electro-
optical devices which are part of quantum cryptosystems
do not deviate from model assumptions made to establish
security proofs [5–11].

Recently, it has been demonstrated that both commer-
cial QKD systems on the market can be fully cracked
[12–14]. A tailored bright illumination was employed
to remote-control gated avalanche photodiodes (APDs)
used to detect single photons in these QKD systems.
In another work, a full eavesdropper has been imple-
mented on a research system using passively-quenched
APDs [15]. The overall purpose of the work reflected in
this paper is now to establish the generality of this attack,
by extending its validity to QKD systems employing the
most commonly used model of actively-quenched APD,
PerkinElmer SPCM-AQR detector module [16]. More-
over, we wish to illustrate here that the principle of our
attack can be exploited in numerous ways, leading in
practice to several control modes of the APDs (three in
the case of the detector tested in this paper). We now
explain briefly the general scheme of attack, before em-
barking on particularities of this detector model.

From eavesdropper’s point of view, the intercept-resend
attack provides a general framework to exploit unac-
counted non-idealities or operating modes of components.

In this attack, we assume that the eavesdropper Eve
owns an exact replica of receiver Bob’s detection appara-
tus, with which she intercepts and measures the state of
each qubit sent by Alice. To successfully eavesdrop, Eve
must resend faked states [21] that will force her detec-
tion results onto Bob’s in a transparent way. Ideally, the
faked state should make the target detector click control-
lably (with unity probability and near zero time-jitter)
while keeping any other detector blind (no click). In the
Bennett-Brassard 1984 (BB84) [22] and similar four-state
protocols, Bob must detect two bit values in two bases,
which can be implemented with two pairs of detectors.
One pair detects bit values “0” and “1”, and a second
pair (not necessary with active basis choice) detects in
the conjugate measurement basis, which is randomly se-
lected prior to detection of each qubit in order to guar-
antee security against eavesdropping. Thus in 50% of
the cases, the qubit resent by Eve will be measured by
Bob in the conjugate basis, resulting in a random out-
come. Similarly, if the photonic qubit is replaced by a
classical pulse of peak power Pth, an incompatible choice
of basis will result in arrival of pulses of power Pth/2
at both detectors. Let us now assume that under some
conditions, detectors remain blind at power Pth/2 and
click controllably at threshold power Pth. With the lat-
ter pulse, Eve can selectively address the target detector
without causing a click in the conjugate basis. This is il-
lustrated in Fig. 1 in the case of a QKD system running a
four-state protocol with polarization coding and passive
choice of basis at Bob’s side. After Bob reveals in which
bit slots he has registered detections, Eve will have the
same key bit sequence as Bob. Eve thus can extract the
final secret key by listening to the classical public com-
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Bob′Alice Faked-state
generator

Blinding
generator

V clicks

H

A

D

V clicks

H

A

D

V

FIG. 1. (Color online) Intercept-resend (faked-state) attack Eve could launch against a QKD system which runs a four-state
protocol with polarization coding and passive choice of basis [17–20]. In the example, Eve targets the detector recording
vertically polarized qubits in the horizontal/vertical (H/V) basis. We assume here that detectors click controllably when
illuminated by an optical pulse with peak power ≥ Pth, and that they are blind (or kept blind) at power ≤ Pth/2 (characteristics
of the ‘blinding generator’ potentially needed to bring detectors in this working mode will be described later). To address the
target detector, Eve sends a faked state with V polarization and power 2Pth, thus the V detector receives power Pth after
basis choice, and clicks. The detectors recording polarized qubits in the conjugate (45◦-rotated, D/A) basis each receive a
pulse of power Pth/2, and thus remain blinded. In the diagram: BS, 50:50% beamsplitter; PBS, polarizing beamsplitter; HWP,
half-wave plate rotated 22.5◦.

munication between Alice and Bob and doing the same
post-processing operations as Bob [12, 15]. Thus, provid-
ing that the above assumption of the detector threshold
behavior is satisfied, QKD systems using such detectors
are vulnerable.

Let us now explain how this assumption can be ful-
filled. Most QKD systems today use avalanche pho-
todiodes (APDs) to detect single photons [23]. (The
two notable exceptions are continuous-variable QKD sys-
tems [24–28] and those using superconducting detectors
[3, 29, 30].) For single-photon sensitivity, APDs are oper-
ated in so-called Geiger-mode, i.e., they are biased above
the breakdown voltage so that an absorbed photon trig-
gers an avalanche. (In case of gated-mode operation, the
APD is biased above breakdown only during the gate
time to limit noise [12, 23].) The avalanche current is
sensed by a comparator before the avalanche is quenched
to reset the diode. Quenching is achieved by lowering
(passively or actively) the bias voltage below breakdown.
In the latter condition, however, the APD no longer be-
haves as a single-photon detector but as a classical lin-
ear photodiode generating photocurrent proportional to
the optical illumination. It is thus insensitive to single
photons, but also to noise sources (dark counts, after-
pulses). However, it is still possible to make the APD
click controllably since in this linear mode, the com-
parator threshold translates to a classical optical power
threshold Pth. Providing the threshold is well-defined, no
click will ever occur at power Pth/2, and Eve has at her
disposal a very general attack for breaking the security
of most APD-based QKD systems.

In the case of the two recently-hacked commercial
QKD systems operating at telecom wavelengths [12],
transition from Geiger to linear mode was achieved by
using continuous-wave (c.w.) bright illumination to re-
duce APD bias voltage below breakdown. Equivalently,
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FIG. 2. (Color online) Oscillogram at detector output (lower
trace) illuminated by bright optical pulses (upper trace) made
of control pulses (808 nm, 8mW, 50 ns wide, 800 kHz repeti-
tion rate) to blind the detector, and of weaker trigger pulses
(8 ns wide). The trigger pulses make the detector click with
unity probability and sub-nanosecond time jitter only above
a certain power threshold. In the example, detector always
clicks at Pth = 2.88mW peak power trigger pulses, never
clicks at ≤2.49mW.

raising the breakdown voltage above the fixed bias volt-
age by heating the APDs also led to blinding and control
of the detectors [14].

In this paper, we illustrate further the generality of
the attack by taking full control of a commercial detec-
tor model commonly used for QKD in the visible/near
infrared range (PerkinElmer SPCM-AQR module [16]).
In this case, we achieved transition to linear mode by ap-
plying not c.w. but instead bright pulsed illumination at
the level of less than 10 mW at ≥70 kHz repetition rate.
Between two pulses, the detector is blind to single pho-
tons, dark counts and afterpulses, and clicks controllably
if a classical pulse ≥Pth is applied, as illustrated in Fig. 2.
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Fig. 3(a) shows at which optical pulse frequencies
blinding of the detector is achieved, and the correspond-
ing bias voltage at the APD. We identified three distinct
mechanisms responsible for blinding. Each mechanism is
activated in a different range of control pulse frequencies,
as discussed below.

The first blinding mechanism corresponds to transition
from Geiger to linear mode by lowering the APD bias
voltage below breakdown. As the frequency of optical
pulses increases, control first appears when the APD bias
voltage drops by 12–15 V (Fig. 3(a)). To understand why
it drops, let’s consider the detector electrical circuit de-
picted in Fig. 4. When the APD is illuminated by a bright
optical pulse, the current through it is not interrupted by
the detection and quenching circuit (DQC) and is much
larger than during an ordinary single-photon avalanche.
A current limiting circuit (CLC) kicks in and limits the
current pulse to about 10 mA. This current is drawn
from the capacitor C9, whose other end is connected to
the output of a low-power opamp U7.1. This opamp has
a specified maximum load current significantly smaller
than 10 mA. It gets overloaded by the current pulses,
and unexpectedly develops a large static voltage offset
between its inputs (see Fig. 3(b), middle chart). This
negative offset effectively adds to the pre-set reference
voltage at the opamp non-inverting input, and the feed-
back loop lowers the APD bias voltage proportionally.

At higher control pulse frequencies ∼1 MHz, however,
the disrupted opamp gets back into normal operation.
At these frequencies, the duty cycle of the current pulses
at the opamp output gets closer to 1/2, thus its sourc-
ing peak current decreases while its sinking peak current
grows; they become close in magnitude and now bet-
ter suit opamp load capability. As a result, the APD
bias is raised back to the nominal value. Yet, the de-
tector remains blind. This occurs because the APD pro-
duces more heat through electrical power dissipated in it,
as the frequency of control pulses increases. In normal
operation, the APD is cooled to −7 ◦C with a thermo-
electric cooler (TEC). The TEC heat removal capability
and maximum current are inherently limited. As can be
seen in the lower chart in Fig. 3(b), after a temperature
controller reaches the maximum TEC current, the APD
temperature quickly rises. The raised APD temperature
in turn raises its breakdown voltage (by about 1.2 V/◦C)
above the bias voltage, which also leads to blinding. This
thermal blinding behavior is the same as previously re-
ported for gated detectors in the commercial QKD sys-
tem Clavis2 (Fig. 5).

At even higher pulse frequencies, the bias voltage drops
again below breakdown, while the detector is still under
control. This is due to load capacity exhaustion of the
high-voltage DC/DC converter U6 biasing the APD.

Above, we have demonstrated three distinct blinding
modes in the SPCM-AQR detector model [16]. Some
QKD experiments [20] use a four-channel version of this
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FIG. 3. (Color online) Detector blinding: (a) APD bias volt-
age vs. frequency and peak optical power Pcontrol of rectan-
gular 50 ns wide input optical pulses. Normal bias voltage at
low count rate for this detector sample is 410V (the other
detector sample we tested had bias voltage of 350V). Filled
symbols denote pulse parameters at which the detector got
completely blind between the control pulses. (b) Parameters
in the circuit vs. frequency of optical pulses with peak power
Pcontrol = 8mW. Behavior of these parameters reveals three
blinding mechanisms summarized over the top of the chart.
The middle chart shows static voltage difference between the
opamp inputs. The lower chart shows current of the ther-
moelectric cooler (TEC) and the temperature of the APD as
measured by a thermistor mounted nearby at the cold plate
of the TEC.
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FIG. 4. Simplified reverse-engineered circuit diagram of PerkinElmer SPCM-AQR module. In normal operation, the cathode
of the APD is biased at a constant high voltage, stabilized by a feedback loop containing an opamp U7.1 (Texas Instruments
TLC2262), field-effect transistor Q11 and high-voltage DC/DC converter module U6 (EMCO custom model no. 9546). The
anode of the APD is connected to a detection and quenching circuit (DQC). The DQC senses charge flowing through the APD
during the avalanche, then briefly connects the APD anode to +30V to lower the voltage across the APD below breakdown
and quench the avalanche. The APD anode voltage is subsequently reset to 0V, and the detector becomes ready for the next
avalanche. (Note: the circuit diagram has been greatly simplified for the paper; do not use this figure for attempting detector
repair or modification.)
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FIG. 5. (Color online) Comparison of thermal blinding char-
acteristics of the PerkinElmer SPCM-AQR detector to the
ones reported for ID Quantique’s Clavis2 commercial QKD
system [14]. Filled symbols denote regime in which the de-
tector got completely blind between the control pulses.

detector module, PerkinElmer SPCM-AQ4C [31]. Our
preliminary analysis indicates that it has a different bias
control circuit that is not susceptible to the first blinding
mechanism (opamp overload). However, it is likely sus-
ceptible to both thermal blinding and DC/DC converter
overload, because it uses the same APD package and the
same model of DC/DC converter.

The only side effect that betrays our attack is the si-
multaneous arrival at all detectors of the blinding pulses
with a rate of at least 70 kHz. In some QKD systems,
these may be ignored by Bob as falling outside his post-
processing gating time window. In free-space systems

operating in daylight [18, 19], these pulses may be mis-
taken by Bob for normal background count rates. The
control pulses can be irregularly spaced to make them
look more like background counts. We remark that the
blinded state has some inertia (especially in the case of
thermal blinding [14]) that should in principle allow Eve
to apply the blinding pulses in bursts interleaved with
quiet periods when only the trigger pulses are applied.
We also note that both APDs used in the present study
died suddenly after prolonged extensive testing, which
may indicate that at least some of these control regimes
reduce their lifetime.

Countermeasures for all detectors considered may in-
clude monitoring the incoming optical power, as well as
monitoring the APD bias voltage, current and temper-
ature. Single-photon sensitivity of Bob’s APDs can be
tested at random times by a calibrated light source placed
inside Bob. Although development of countermeasures
has begun [12, 32], no definite countermeasure has been
finalized and tested by hacking at this time [33]. The
most frequently proposed countermeasure is an optical
power meter at Bob’s entrance. Currently this should
not be considered a sufficient countermeasure: it is un-
clear how to select the power meter threshold which must
be derived from a security proof with a sufficiently gen-
eral detector model.

In view of this study, complemented by the ones made
on other APD models [12–15], we estimate that most of
the QKD systems existing today are potentially vulner-
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able to our attack, the only ‘detector-dependent’ aspect
here being the type of bright illumination (none, c.w., or
pulsed) required to bring a particular APD into the lin-
ear regime. Our work emphasizes the need to investigate
thoroughly vulnerabilities originating from unaccounted
physical non-idealities of QKD components.
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We experimentally demonstrate that a superconducting nanowire single-photon detector is deter-
ministically controllable by bright illumination. We found that bright light can temporarily make
a large fraction of the nanowire length normally-conductive, can extend deadtime after a normal
photon detection, and can cause a hotspot formation during the deadtime with a highly nonlinear
sensitivity. In result, although based on different physics, the superconducting detector turns out
to be controllable by virtually the same techniques as avalanche photodiode detectors. As demon-
strated earlier, when such detectors are used in a quantum key distribution system, this allows
an eavesdropper to launch a detector control attack to capture the full secret key without being
revealed by errors in the key.

I. INTRODUCTION

Quantum key distribution (QKD) allows two parties,
Alice and Bob, to generate a secret random key at a dis-
tance [1–4]. The key is protected by quantum mechanics:
an eavesdropper Eve must disturb the signals between
Alice and Bob, and therefore reveal her presence. QKD
using perfect devices has been proven secure [5, 6].

Implementations of QKD have to use components
available with current technology, which are usually im-
perfect. While there are numerous security proofs con-
sidering more realistic devices [7–15], these proofs assume
that the imperfections are quantified in terms of certain
source and detector parameters. Due to the difficulty of
characterizing or upper bounding these parameters owing
to limitations of these security proofs, it is common to use
the more established security proofs for ideal systems also
in practical implementations. With actual devices devi-
ating from the ideal models, numerous security loopholes
have therefore been identified [16–24], and in some cases
exploited in eavesdropping experiments without [25, 26]
and with [27, 28] secret key extraction by Eve. Finding
and eliminating loopholes in implementations is crucial
to obtain provable practical security.

As an example, several recent attacks have been based
on bright-light control of avalanche photodiodes (APDs)
[22, 23, 27–33]. Superconducting nanowire single-photon
detectors (SSPDs) studied in this paper are based on dif-
ferent physics. However, as we will see, the principles of
attacks on QKD systems using SSPDs are broadly simi-
lar to attacks on QKD systems using APDs: Eve uses a
faked-state attack [34], can blind the detectors [22, 23],
make them click with a classical threshold using a bright

∗ lars.lydersen@iet.ntnu.no
† makarov@vad1.com

pulse [23] or let one detector temporarily recover from
blinding [22]; also, detector’s response to multiphoton
pulses can be superlinear [33]. We refer to these princi-
ples through the paper.

Although SSPDs have been used in several QKD ex-
periments [35–39], this detector technology is still in its
infancy. No automated unattended operation of sys-
tems containing SSPDs has been reported. Technical as-
pects of SSPD operation, such as handling the latching
behavior and converting the nanowire analog response
into a digital detection signal, have only been studied
in the normal single-photon counting regime. So far,
no attempt has been reported to consider SSPD’s non-
idealities in order to attack a QKD system. This study
thus serves as an early warning. Although we have done
our experiments on only one detector sample, we show
that control by bright light can be achieved through two
separate mechanisms, and may thus be applicable to dif-
ferent detector electronics designs [40].

The paper is organized as follows. In Sec. II, we de-
scribe the SSPD under test. Sections III and IV deal with
the SSPD in the latched and non-latched states; in each
section we present the physics behind detector’s reaction
to bright-light illumination, then how it can be exploited
to attack QKD. We discuss our findings and conclude in
Sec. V.

II. DETECTOR DESIGN AND OPERATION

We performed our tests on an SSPD of a fairly stan-
dard configuration, which has been characterized in pre-
vious publications [41–43]. The SSPD chip was manu-
factured at the State Pedagogical University, Moscow,
and consists of a 4 nm thick, 120 nm wide NbN nanowire
on sapphire substrate, laid out in a 10 × 10 µm mean-
der pattern with 60% filling ratio. The chip is pack-
aged and installed in a ∼ 1 m long dipstick assembly (see
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FIG. 1. (Color online) Detector circuit. The SSPD is biased from a battery-powered direct current (DC) source, an equivalent
circuit diagram of which is shown. Pulses produced by the SSPD travel through ∼ 1m coaxial cable, bias tee (0.1–6000MHz,
Mini-Circuits ZFBT-6GW+), radio-frequency (RF) amplifier (voltage gain 100, 0.1–1500MHz, Phillips Scientific 6954-S-100),
∼ 1.5m coaxial cable, and RF splitter (Mini-Circuits ZN2PD-9G-S+), to the counter and oscilloscope. Inside the oscilloscope
box: normal single-photon response after the RF amplifier and splitter, shown as a single-shot trace with 2GHz bandwidth
(solid line) and averaged over many pulses (dashed line). Features appearing 12 ns after the leading edge are attributed to
reflections due to impedance mismatch in the RF circuits.

Ref. [42] for details), lowered into a Dewar flask. During
detector operation, the chip is immersed into liquid he-
lium at 4.2 K. It is optically accessible through a single-
mode fibre. The chip is connected to a room-temperature
bias tee and wideband radio-frequency (RF) amplifier via
a 50 Ω coaxial cable (Fig. 1). A battery-powered cur-
rent source biases the superconducting nanowire with
Ib = 22.5 µA which is ≈ 0.85 of its critical current Ic
(this Ib value provides the highest ratio of photon de-
tection probability at 1550 nm to dark count rate, for
this particular SSPD sample). The signal from the out-
put of the RF amplifier is split to a 16 GHz single-shot
oscilloscope (Tektronix DSA 71604) and a counter (Stan-
ford Research Systems SR400). Detection efficiency for
single photons at 1550 nm was 2.2 × 10−5 and the dark
count rate was < 1 Hz. The detector sensitivity was
polarization-dependent; in all experiments in this paper
polarization was aligned to maximize the detection effi-
ciency, using a fiber polarization controller.

One aspect of detector operation is how the analog
pulse produced by a transient hotspot (see inset in Fig. 1)
is converted into a detection event and assigned a partic-
ular timing. The analog pulse is well-defined, its magni-
tude and shape being nearly constant from one photon
detection to another. Therefore almost any discrimina-
tor design would work for single-photon detection, and its
implementation details (bandwidth, hysteresis, whether
it is a threshold discriminator or a constant-fraction dis-
criminator, etc.) are often omitted in the literature on
SSPDs. However these details become more important
for demonstration of detector control by bright light. We
assume in this study that the analog pulse is sensed by a
high-speed voltage comparator, and the detection event

timing is registered by pulse’s leading edge crossing a pre-
set comparator threshold. Indeed this is how our SR400
counter operates: it has an adjustable threshold set with
0.2 mV resolution. In our setup, the counter works cor-
rectly (registering one count per one single-photon ana-
log pulse) in a wide range of threshold settings, +4.4 to
+37 mV. A detail not mentioned in the literature is what
threshold level the comparator should be set at, within
this working range. While the setting may not affect nor-
mal detector operation, only a part of this voltage range
is reachable under bright-light control described in the
following section.

Another interesting aspect of detector operation is
latching. In single-photon detection regime, the hotspot
after formation shrinks quickly and the nanowire returns
to the superconducting state [44]. However the detec-
tor also has a stable latched state, when a larger self-
heating hotspot persists indefinitely, at a steady current
Ilatched which is a fraction of Ib, and a large voltage
across the SSPD. The detector is blind to single pho-
tons and does not produce dark counts in this regime. A
properly designed SSPD does not enter the latched state
after a single-photon detection [44, 45]. However it can
still latch after an electromagnetic interference (which in
our experiment was easily caused by switching on and
off lights and other mains-powered electrical equipment
in the same building). Latching also occurs after a brief
bright illumination: as little as 50 nW, 5 ms long single
light pulse at 1550 nm reliably latches the device. In-
creasing the bias current Ib very close to Ic also leads to
latching. The only way to return the detector from the
latched state into the normal regime is to temporarily
reduce Ib below Ilatched. In our experiment, and suppos-
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edly in most other experiments reported in the literature,
this was performed manually.

III. DETECTOR CONTROL IN LATCHED
STATE

A. Physics

In the latched state, the Joule heat generated in the
normally-conductive fraction of the nanowire exactly bal-
ances the cooling. The length of the normally-conductive
fraction changes with the voltage applied across the
SSPD. We investigated this by replacing the battery-
powered bias source with an external voltage source. In
our experiment, Ilatched was roughly 7 µA regardless of
the voltage across the device, up to 10 V (we did not
apply higher voltages to reduce a chance of electrical
breakdown). At 10 V, the nanowire resistance was thus
∼ 1.4 MΩ. Above the superconducting transition tem-
perature the resistance of the entire device is approxi-
mately constant, and is ≈ 2.3 MΩ [43]. Therefore we
concluded that slightly over half its length was normally-
conductive at 10 V. During the experiment, Ilatched
would randomly assume a value in the 6 to 8 µA range,
which could correspond to the normally-conductive re-
gion shifting and “locking” to the local variations of
nanowire thermal characteristics along its length.

Next, we investigated what happened when bright
continuous-wave (CW) light was applied in the latched
state. Under illumination, current I through the de-
vice dropped, with a different sensitivity at different
voltages (Fig. 2(a)). When recalculated into device re-
sistance (Fig. 2(b)), we see that at low source volt-
ages the resistance increased by about the same amount
(350–400 kΩ per 20 mW), while at 10 V the increase was
smaller (∼110 kΩ). Note that depending on optical cou-
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FIG. 2. (Color online) Response to continuous-wave (CW)
light in the latched state. (a) Current I through the SSPD
vs. optical power at 1550 nm, at different voltages V applied
across the SSPD. (b) SSPD resistance R = V/I .

pling, illumination may be unevenly distributed along the
nanowire.

Implementation and maximum voltage of the bias
source is yet another detail that varies between setups
and is rarely specified in the literature. In our detector
it is implemented as a ≈ 0.1 V voltage source in series
with ≈ 4.5 kΩ resistor (see Fig. 1), with both voltage
and resistance being trimmable in a small range to set
precise Ib in the normal (non-latched) regime. When the
SSPD resistance is zero, this bias circuit acts as a current
source. However, in the latched state the SSPD resis-
tance becomes larger than the circuit output impedance,
thus it acts as a voltage source. Measurements done with
this battery-powered bias circuit closely match the 0.1 V
curve in Fig. 2.

B. Exploit

The eavesdropper Eve can latch the device by applying
a single 5 ms long light pulse at 1550 nm. Latching occurs
at any pulse power > 50 nW.

In the latched state, the SSPD is insensitive to single
photons and produces no dark counts (similarly to blind-
ing of APDs [22, 23]). However, the nanowire’s response
to bright illumination detailed in Sec. III A also holds on a
nanosecond scale, and can be used to produce an electri-
cal pulse after the RF amplifier and splitter (Fig. 3) [46].
The response is caused by a larger piece of the nanowire
becoming normally conductive during the bright illumi-
nation, therefore causing an abrupt change in the resis-
tance, just as a single photon causes an abrupt change in
the resistance in the normal operating regime. Note that
the electrical response to a bright trigger pulse saturates
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at ∼ 20 mV when optical power > 15 mW is applied, be-
cause at this power the current through the nanowire is
reduced to almost zero.

Since this analog electrical pulse is sensed by a com-
parator, the detector has a highly superlinear detection
probability of bright pulses [33]. The actual detection
probability depends strongly on the comparator thresh-
old (Fig. 4). With the comparator threshold in the 5–
20 mV range, the detection probability is highly superlin-
ear and increases quickly from negligible to a substantial
value for a 3 dB increase in the optical power. A suf-
ficient condition for a detector control attack is a large
ratio of detection probabilities over a 3 dB change in the
trigger pulse power [23, 33] (or 6 dB change in the trig-
ger pulse power for distributed-phase-reference protocols
[29]). Then Eve can intercept the quantum states from
Alice, and resend bright trigger pulses corresponding to
her detection to Bob [23, 33]. If Eve used a measurement
basis not matching Bob’s, she wants her pulse to remain
undetected. Indeed when the pulse is measured by Bob
in a different basis, it will be split to both detectors, cor-
responding to 3 dB reduction in its power, and almost
never cause a click. Due to the large difference in detec-
tion probability for 3 dB change in the trigger pulse am-
plitude, a detector control attack would cause negligible
errors and not expose eavesdropping, for the comparator
threshold settings . 20 mV. Above ∼ 20 mV the trigger
pulses stop causing clicks at all, and this attack method
no longer works. However, it may be possible to reach
higher threshold settings using a different attack method
described in the next section.

IV. DETECTOR CONTROL VIA DEADTIME
EXTENSION

A. Physics

In this section we consider a non-latched, single-photon
sensitive normally operating detector. The attack is
based on detector’s ability to form a hotspot in response
to bright light when the current I through the SSPD
is low. In addition, the hotspot formation probabil-
ity at a low current is strongly superlinear. It is well-
known that at relatively low values of the bias current
Ib, multiphoton processes dominate the detector sensi-
tivity [33, 47, 48]. Here we demonstrate that this effect
becomes extreme during the normal recovery time after
a photon detection.

In normal detector operation, after the hotspot for-
mation, I drops to a fraction of Ib [44]. Then, I expo-
nentially recovers to Ib at a slow rate, owing to a rel-
atively large kinetic inductance of the superconducting
nanowire (see dashed trace in Fig. 5). During the initial
part of this recovery, the SSPD remains insensitive to
single photons, but it can react to a bright illumination
by forming another hotspot, with a higher illumination
power being able to form a hotspot earlier in the recov-
ery. This is illustrated in Fig. 5, which shows electrical
response to a 48 ns long bright pulse. At 0.25 mW pulse
power, the single-shot trace clearly shows that the SSPD
forms a hotspot on average every 6 ns. At 0.5 mW, the
period reduces to ∼ 2.7 ns. At higher optical powers sep-
arate hotspot formations are no longer distinguishable,
but the whole electrical pulse gets higher, indicating a
lower average current through the nanowire during the
optical pulse. Thus, during a sufficiently bright optical
pulse, the electrical signal will stay above the comparator
threshold. This allows Eve to extend the detector dead-
time after the first photon detection, up to 500 ns with
this detector setup, without causing latching.

We further quantify the hotspot formation probability
during the recovery, by applying a 53 ps FWHM trigger
pulse after the closing edge of the 48 ns, 2.5 mW pulse.
(The recovery after the bright pulse should be similar to
the recovery after a single-photon detection, however we
focus on the former for reasons that will become apparent
in the next subsection.) As far as we can see, response to
this trigger pulse is probabilistic and binary: the hotspot
either forms, or it does not (Fig. 6). In the former case
the recovery resets and starts anew from a certain cur-
rent value, in the latter case the recovery continues undis-
turbed. The probability that the trigger pulse causes a
hotspot is plotted in Fig. 7. The measurement shows that
the detection probability is reduced for at least 40 ns. It
also shows that the detector is highly superlinear in at
least the first 10 ns. During this time, a hotspot can be
formed with unity probability using a sufficiently high-
energy trigger pulse (∼ 150 fJ), while the same trigger
pulse attenuated by 20 dB (i.e., 100 times lower pulse
energy) is very unlikely to cause a hotspot formation.
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FIG. 6. (Color online) Accumulated 30,000 oscilloscope traces
of the electrical response to the trigger pulse during the re-
covery from a 48 ns, 2.5mW rectangular optical pulse. The
trigger is (a) 8 ns into the recovery, 25 fJ energy, (b) 3 ns into
the recovery, 78 fJ energy. In both cases the trigger pulse
causes hotspot formation with roughly 50% probability, and
resets the voltage to the same level. All oscillograms at trigger
pulse delays ≥ 2 ns show the same behavior.

B. Exploit

Extendability of SSPD’s deadtime can be exploited in
the earlier described attack [22] on the Bennett-Brassard
1984 (BB84) and similar protocols. We remark that the
superlinearity is not required for this attack, but is help-
ful and makes it easier. Here we propose a version of
this attack for differential-phase-shift QKD (DPS-QKD)
systems [36, 49]. We explain the key component of the at-
tack: how Eve can control Bob’s SSPDs in the DPS-QKD
system. Bob consists of an unbalanced Mach-Zehnder in-
terferometer, and two detectors D0 and D1 (Fig. 8(a)).
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FIG. 7. (Color online) Hotspot formation probability vs. en-
ergy of a 53 ps wide trigger pulse, for different trigger pulse
delays after the closing edge of a 48 ns, 2.5mW rectangular
optical pulse (both pulses at 1550 nm). The probabilities were
extracted from recorded oscillograms similar to those shown
in Fig. 6. 10−13 J corresponds to 780,000 photons contained
in the trigger pulse.

We assume that a properly implemented Bob will not ac-
cept clicks from both detectors for the duration of recov-
ery after a click in one of the detectors, in order to avoid
the detector deadtime and efficiency mismatch loopholes
[18, 28]. As illustrated above, the expected recovery is
∼ 40 ns long. Eve begins by applying to both detectors
a laser pulse longer than the recovery time (Fig. 8(b)),
with phase ϕ changing in steps along the pulse such that
its power splits equally to the two detectors. This pulse
produces a double click at the beginning, which however
can be timed to fall in between the bit slots and be dis-
carded by Bob. Immediately after this long pulse, Eve
applies a sequence of short pulses. Their phases are cho-
sen to steer them primarily to one of the two detectors
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between the two interferometer arms. (b) Diagram showing Eve’s optical output, how her light splits between the two Bob’s
detectors, and how the electrical signals in each detector react to it.

(similarly to [29, 50]) and form hotspots in that detec-
tor only, keeping the comparator input voltage above the
threshold. In the other detector, the voltage is allowed
to fall below the comparator threshold. Then a pulse is
applied and causes a click only in the detector that has
recovered. Eve can end her control diagram here, or re-
peat the long pulse (as shown in Fig. 8(b)) and then make
another controlled click. The total length of such chained
control diagram producing several controlled clicks is lim-
ited by low-frequency cutoff of the RF components, and
in the case of our setup can be up to 500 ns. We re-
mark that the short-pulsed parts of the diagram could in
principle be replaced by a single phase-modulated long
pulse, however short pulses may be easier to steer be-
tween Bob’s detectors in case of sub-nanosecond ∆t used
in the modern DPS-QKD systems [36].

Interferometers used for DPS-QKD are of a sufficiently
good quality to allow Eve an extinction ratio of at least
20 dB when routing her short pulses between the two
Bob’s detectors [36]. Examination of the recovery traces
in Fig. 6 and hotspot formation probabilities in Fig. 7
suggests that the above control diagram will work. It

should allow Eve to make clicks in Bob deterministically,
or close to deterministically, in a wide range of compara-
tor threshold voltages and ∆t, even for ∆t = 100 ps [36]
or/and a threshold voltage above 20 mV. Eve should be
able to vary the number of short pulses during the re-
covery to suit these system parameters, and still induce
clicks in the correct detector most of the time.

Our present experimental setup did not allow us to
verify this control diagram experimentally for all combi-
nations of threshold voltages and ∆t. However, we have
verified that the detector is controllable as expected for
a simulated ∆t = 5 ns and threshold setting of 11.6 mV.
We used a 2 mW peak power, 53 ns long pulse (with
1 mW, 5 ns steps at the sides as per diagram in Fig. 8(b)).
We added 5 or 10 ns behind it a single 53 ps FWHM short
pulse, and measured the click probability by the SR400
counter while varying the short pulse energy. With an en-
ergy difference that simulated interferometer extinction
ratio of 20 dB, control over the detector was nearly per-
fect: probability of a click induced at 10 ns in the wrong
detector was < 0.005%, in the right detector > 99.7%.
At simulated 10 dB extinction ratio, the wrong detector
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click probability was < 1%. Jitter of the clicks caused by
the short pulse was 250 ps FWHM, while that of clicks
caused by the long pulse leading edge was 170 ps FWHM.

V. DISCUSSION AND CONCLUSION

The experimental results show that the control of this
SSPD is nearly perfect. Therefore, if this SSPD were
used in a QKD system, an eavesdropper could use bright
illumination to capture the full raw and secret key, while
introducing negligible errors.

While the SSPD is based on different physics than the
APD single-photon detector, the similarity in how they
can be controlled is startling. Latching the SSPD us-
ing bright illumination can be considered as permanently
blinding it, without the need for additional illumination
to keep it blind. In the latched/blind state, the SSPD
exhibits the same superlinear response to bright trigger
pulses as a blind APD. Likewise, controlling the SSPD
using deadtime extension is nearly identical to controlling
the APD using deadtime extension: the only difference
is that for this SSPD the low-frequency cut-off of the RF
components (and on a longer time scale the latching phe-
nomenon) limits how long the deadtime can be extended.

Countermeasures against bright illumination attacks
have been discussed extensively [22, 23, 27, 32, 51–53],
and most of the countermeasures are equally applicable
to SSPD-based detectors. To summarize the discussion,
detectors should be designed in a provably secure way.
For instance, in an installed QKD system, latching can

be avoided either by an automated reset, or by includ-
ing a shunt resistor in parallel with the nanowire [54].
However, this does not guarantee that latching is pre-
cluded for all types of external input, and more impor-
tantly this countermeasure does not fit into a security
proof. Therefore, detector control based on both latching
and deadtime extension should be avoided by including
a calibrated light source inside Bob, randomly testing,
and thereby guaranteeing the single photon sensitivity
at random times as modelled in the security proof [53].

As mentioned in the introduction, SSPDs are still in
their infancy, and therefore our findings might not apply
to other detector designs. However, our findings clearly
demonstrate that unless detector control is specially con-
sidered during design, SSPDs may be controllable us-
ing bright illumination, just as their APD-based cousins.
The early stage of SSPD technology is an excellent oppor-
tunity to avoid detector control vulnerability for future
generations of SSPDs. Designing hack-proof detectors
will be crucial for the success of QKD.
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Quantum key distribution (QKD) has initially been
proven secure using ideal devices. However, implementa-
tions use imperfect devices available with current technol-
ogy. Therefore, there are security proofs for QKD which
model the devices to allow these imperfection, though
at the expense of a lower secure key rate. To achieve
provable security, it is crucial that the devices and im-
plementations are verified to be within the models in the
security proofs.

Security loopholes have been found originating from
discrepancies between the actual implementations and
the models in the security proofs. For instance, one such
discrepancy allows the tailored bright illumination at-
tacks [1–3], recently shown also to be applicable against
superconducting single-photon detectors [4, 5]. In this
case the loophole is caused by the response of qubit mea-
surement devices (detectors) to swarms of qubits (bright
illumination). The question is how to counter such loop-
holes.

In their paper, Yuan et al. propose to counter these
bright illumination attacks by monitoring the avalanche
photodiode (APD) current for “anomalously high values”
[6]. The robustness of this countermeasure is shown by
arguing that previously proposed attacks do not work
anymore. First of all, this leaves the challenge of deter-
mining what is “anomalously high”. In order to achieve
provable security, this threshold must originate from a
security proof. Secondly, the fundamental issue, namely
that the detector response deviates from the models in
the security proofs [7], is not solved by this countermea-
sure.

As discussed previously [8, 9], practical QKD can-
not become provably secure by intuitive countermeasures

against known attacks. This approach also requires man-
ufacturers to make frequent, possibly costly upgrades to
their systems. Loopholes should instead be countered by
modifying the implementation and/or the security proofs
such that the devices are within the models of the security
proofs. This is the only way practical QKD can obtain
the provable security that makes it superior to classi-
cal key distribution schemes. This is also how loopholes
have been handled previously: for example, the photon-
number splitting attack [10] led to more general secu-
rity proofs [11] and eventually more efficient protocols
to negate the decrease in the key rate [12]. In another
example, detector efficiency mismatch [13], enabling for
instance the time-shift attack [14, 15], is now included in
security proofs [16, 17]. For the bright illumination at-
tacks, we have proposed a secure detection scheme which
integrates with security proofs [18]. In this scheme, a
calibrated light source is used to verify the quantum ef-
ficiency in the center of the detector gate. Randomizing
detection events outside the center of the gate provides
a lower bound on the fraction of detections in the center
of the gate.

In this particular case, we have already shown that
an eavesdropper using temporally tailored light of short
pulses containing less than 120 photons can threaten the
security of QKD [4]. This faint after-gate attack would
not be detectable with the countermeasure proposed by
Yuan et al., since the pulses would not cause an “anoma-
lously high” current, but rather a current similar to the
current caused by a single photon. Therefore, this serves
as an example of the risk associated with closing loop-
holes in an intuitive way.
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