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Abstract
The single-photon detectionefficiency of the detector unit is crucial for the security of common
quantumkey distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency
indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections.We present
amethod for estimating the detection efficiency, and calculate the corresponding secure key
generation rate. The estimation is done by testing gated detectors using a randomly activated photon
source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-
photon detection efficiency, both inherit or due to blinding. By adding extra optical components to
the receiver, wemake sure that the key is extracted fromphoton states for which our estimate is valid.
The result is a quantumkey distribution scheme that is secure against any attack that exploits detector
imperfections.

1. Introduction

Quantumkey distribution (QKD) [1, 2] is amethod to distribute a secret key between two separate parties,
commonly namedAlice and Bob. In aQKD scheme, Alice and Bob share a quantum channel to distribute the
key, as well as an authenticated classical channel for post processing. They also need a source to create a quantum
signal, and a detector. An eavesdropper, Eve, is allowed full control over the quantum channel andmay listen to
the classical channel. Under these conditions, and under the assumption that Alice and Bob’s equipment is
flawless, QKDhas been proven unconditionally secure [3, 4].

In the real world, equipment is imperfect. Security has been proven for certain general and specific
imperfections [5–7]. However, for several different imperfections, attacks againstQKD systems have been
proposed [8–21].Most of these studies experimentally demonstrated imperfection of a system component or
subsystem that would allow an attack, but a couple experiments demonstrated successful eavesdropping of the
key in a running system [14, 16].Many realistic attacks, including the latter two, take advantage of imperfections
in the detectors [8–10, 12–14, 16, 17, 21–25]. A secure setup requires Bob tomeasure the signal in a randomly
chosen basis. Any differences in detection probability between the bases, in any domain (time, frequency, or
modes), can be exploited by Eve [26, 27]. Such differencesmay either be inherent in the system itself or be forced
upon the systembyEve, for example by blinding one of the detectors [12, 14].

Several solutions have been proposed to the problems caused by imperfect detectors. One option is to use a
security proof which is valid for uncharacterized detectors [28]; however, then a positiveQKD rate requires
unrealistically high-detection efficiency in the system. Apromising approach is the so-calledmeasurement
device-independentQKD [29], where a secure key is generated evenwith untrusted detectors at the expense of a
somewhatmore complicated system [30, 31]. Anothermore direct approach is tofind countermeasures for each
attack [32–34].While convenient and practical, one cannot necessarily be sure that the countermeasures close all
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types of attacks or just the already known attacks [35–37]. Also, the countermeasure itself often requires new
components ormodified setups, which in turnmay open new loopholes.

In this article, we suggest an approach that secures the detector against all attacks as long as some reasonable
assumptions are satisfied. This will be done by using the security proof in [38], where Bob’s part of the system is
characterized by a parameter η, which corresponds to theminimumprobability that a non-vacuum signal
incident to Bob is actually detected by him.Using an additional photon source, we can estimate η, and quantify
the trustworthiness of the detectors. Tomake sure the assumptions for our proof are satisfied, wemake some
modifications to Bob’s part of the system and use bit-mapped gating [39]. A secure key rate can then be
calculated. Qualitatively, it can be said that the bit-mapped gating and themodifications to Bob takes care of
detector efficiencymismatch type loopholes; our additional photon source takes care of attacks exploiting low
single-photon detection efficiency, like the blinding attack.

For simplicity, we consider the special case of infinite key length (known as the asymptotic limit). Similarly,
to the so-called device-independent QKD scenario, we assume that no information leaks out of Alice’s and Bob’s
devices [40]. However, the resultmay be combinedwith imperfections in the source andwith information
leakage from the detectors, both as done in [38] andwith decoy states [41–43].

2. Setup and security proof

Wewill consider the Bennett-Brassard 1984 (BB84) [1] protocol using afiber-based setupwith phase coding [44]
and gated detectors. However, the ideas presentedmay also be adapted to free-spaceQKD [45], and to other
encoding protocols. In phase-basedQKD, the key is encoded into the phase difference between the two parts of a
light pulse. Figure 1 shows a typical phase-basedQKD system. The pulse is created at Alice’s side. Using an
unbalancedmach-Zehnder interferometer, she splits it and encodes her choice of bit and basis by introducing a
relative phase shift between the two halves. Bob’s part of the system, hereafter referred to as Bob, consists of a
similar interferometer and two single-photon detectors.

Alice and Bob choose one of two bases for each pulse and each detection. These two bases are usually referred
to as the z basis and x basis. In a practical setup, the pulses live in a largeHilbert space consisting of several Fock
spaces, and the z and x bases do not correspond to the usual z and x bases in two-dimensionalHilbert space. They
are just names for the two (possiblymisaligned) bases that Alice and Bob specify. The key is created from the n
pulses where the same basis is chosen by bothAlice and Bob, and detection time corresponds to the pulse
traveling the short armof one interferometer and the long armof the other. For these pulses interference
between the two possible paths allows the bit value sent byAlice to be obtained by observing inwhich of the
detectors the pulse arrives.

The choice ofwhichbasis to assign to each letter, x and z, is arbitrary. In fact, Alice andBobmay randomize this
assignment for eachpulse, creating a protocol that is symmetric between the bases. The system’s average yield q̄ ,
which is the fractionof pulses that are detected byBob, and d̄ , the average error rate for those pulses, are thenboth
equal in the twobases7. The secure key generation rate extracted from nq̄ bits received byBob is givenby [6]

R h
H

nq
1 1d= - -( ¯)

¯
( )

in the asymptotic limit. The function h(·) is the binary Shannon entropy, andH is the amount of privacy
amplificationneeded to removeEve’s knowledge of the key. Ifη is constant during the transmission,wehave [38]

H n q q h1 . 2h d= - -( ¯ ¯ ( ( ¯))) ( )

Figure 1.Alice andBob’s system for BB84 quantumkey distribution.

7
This symmetrization simplifies the analysis of the secret rate. In the case of a difference between yields, qz and qx, or error rates, zd and xd ,

between the bases of the unsymmetrized protocol, the symmetrization leads to a lower rate.However, such differences will generally be small
and the impact on the secret rate insignificant.
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Here, for simplicity, we have assumed that the source is perfect; the case with imperfections in the source can
easily be covered by a smallmodification to (2) [38].

Tofind a valid numerical expression for the key generation rate, ηneeds to be lower bounded. The parameter
η is, as in [38], interpreted as theminimumprobability that a non-vacuum incident to the basis-dependent
interferometer in Bob is detected. Thus, η is a parameter explicitly given by the state of Bob’s system, while the
yield q is dependent on both Bob’s system and the incoming pulse. In a realQKD experiment, the state of Bob’s
systemmight change during key exchange. For example, the characteristics of the detectorsmay change as a
result of bright illumination fromEve, as in the blinding attacks [12].Wewill therefore consider η a variable
parameter depending on the state of Bob’s system. Before each individual qubitmeasurement, the system is
characterized by the parameter ih , which is theminimumprobability that a non-vacuum signal is detected by
Bob. The index i labels the different possible characteristics of Bob’s system and pi is the probability that the
system is in the state i. Note that ih is independent of Bob’s basis choice; it is theminimumover any possible
configuration of Bob’s system.

Because Evemaywant to tune the yield q and error probability δ to correlate themwith ih , we need to index
themby i aswell.We note that Evemay control ih , qi, and id . In the sameway as d̄ is the average error probability
for those signals that are detected by Bob, we define h̄ as the average value of η for those same detected signals.
This is also in accordancewith the security analyses in [38] 8. According to these definitions, the parameters are
subject to the relations

p a1, 3
i

iå = ( )

p q q b, 3
i

i iå = ¯ ( )

p q q c, 3
i

i i iå h h= ¯ ¯ ( )

p q q d. 3
i

i i iå d d= ¯ ¯ ( )

Using random sampling to estimate d̄ , error correction can still be done by sacrificing h d(¯ ) bits. The quantityH
in (1) is nowbounded by
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Using the concavity of the binary entropy, we have, for any q̄ , h̄ and 2d h¯ ¯
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We therefore obtain
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The bound (6) is tight, as the right-hand side is achieved if Eve controls the system as follows. For np q nq1 1 h= ¯ ¯
detected pulses, the system is in some state with 11h = and 1d d h= ¯ ¯ . For the remaining nq 1 h-¯ ( ¯ ) detected
pulses, the system is in a state with 02h = and 02d = . The key generation rate is bounded by

R h h1 . 7 h
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This rate is similar to themain result from [38], with the parameter η replaced by its average value and qx= qz. A
main difference is the factor 1 h̄ inside the binary entropy function, which leads to a reduction of the rate. This is

8 h̄ could also have been defined as the average value of η over all incoming signals. This would change equations (3)–(7) and equation (11),
but themain result equation (12)would be the same.
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due to Eve’s ability to avoid introducing errors when the detectors are in a vulnerable state. On the other hand, in
[38] ηmust be interpreted as aminimumvalue, which inmany cases leads to zero rate.

3.Modifications to Bob

Wenow turn tofind a lower bound for the averageminimumdetection probability h̄. Themain idea is to have a
source inside Bob’s setup to test detector sensitivities at random times.Wewill discuss Bob’s parameter η as a
function of frequency (i.e., wavelength of light), time or as a function of detailedfield distributions. In this
context, η is defined as theminimumdetection probability of a non-vacuum state with the prescribed frequency,
time orfield distribution.

In general, the detection probability depends to some extent on the incoming photons frequency,
polarizationmode, phase and the time of arrival. These parametersmay take infinitelymany different values.
Thus, it is unfeasible tofind a lower bound for every state experimentally. Instead, we restrict the state space  of
the incoming signals bymodifying Bob. Thesemodifications willmake sure that any single-photon pulse in 
will have almost the same detection probability. Themodifications are all placed before the interferometer and
Bob’s basis choice. Any loss due to these components will then only contribute to a smaller yield q, and not to η.
We can now estimate h̄ from the detection rate qT of test pulses in  . The test pulses are generated by a source,
fired at randomly chosen gates. The pulses are coupled into the fiber scheme before the interferometer. The
modifications are shown infigure 2.

Thefirst element in themodified Bob is an optical fuse. If Eve tries to send a pulsewith higher power than a
certain value P0, this element will be destroyed and communication on the quantum channel will stop. This
serves a dual purpose. Bounding the power of Eve’s pulse is helpful in our security analysis. Also, deprived of the
possibility of sending strong pulses, wemay assume that Eve cannot radically change the behavior of the optical
elements in Bob’s system via laser damage [46, 47].

If some of Eve’s pulses are let into Bobwhenwe run the test pulses, our test results will be disturbed.We
therefore want an element to deflect, extinguish or at least dampen Eve’s pulses at these times. In combination
with the optical fuse, this switch ormodulatormakes sure that Eve’s pulses consistmainly of vacuumwhenwe
are sending test pulses. The disturbance of the testmeasurement statisticsmust be close to negligible. Note that
this switch ormodulator should not change the parameters qi and id in any other pulses fromEve, as thismay
give Eve some information aboutwhenwe are sending test pulses.

Assumption 1.Whenwe are sending a test pulse, any pulse fromEvewill change the probability of a detection by
atmost E .

To allow just a small bandwidth into Bob, we use a narrowpass filter that transmits light within a frequency
range ,B B0 0w w w wW = - +[ ], and heavily attenuates all light outside it. In practice, suchfilter can be achieved
by a combination of interference- and absorption-based optical filters. The central frequency of the filter, 0w , is
the same as the central frequency of Alice’s pulse9.

Assumption 2. For any pulse fromEvewith frequencies outside the rangeΩ, the probability that at least one
photon is transmitted through thefilter and detected is smaller than qw

10.

Figure 2.Bob’smodified system including a test source.

9
Another interesting idea is to use frequency-dependent phasemodulation. Then frequencies different from 0w are detected by an increased

error rate.
10

Frequencies insideΩwill also be attenuated by thisfilter. However, as this loss is basis-independent, we can attribute it to Eve and it
doesn’t contribute to η.
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The probability qw depends on thefilter performance and the power P0 needed to damage the optical fuse.
For later use, let zw be the fraction of detection events that corresponds to photons outsideΩ.
Clearly, q qzw w .

For states inΩwemake the following assumption.

Assumption 3. For any frequencies ,1 2w w Î W, 1 2 h w h w- W∣ ( ) ( )∣ .

When it comes to spatialmodes, almost all incomingwaves nowhave the same frequency.We can then
insert a short length of single-mode fiber in front of the interferometer.

Assumption 4.Atmost n kz of the pulses detected by Bob have anothermode than themode allowed in the
single-mode fiber.

The parameter kz depends onP0 and the length of the single-mode fiber.Wemake sure that all of this fiber is
inside Bob so Eve cannot easily access it.

Havingmade sure that virtually all signals entering Bob have the required frequency andmode, we now
consider the timing of the signal. Because Eve controls the fiber betweenAlice and Bob, wemust assume that she
can control this timing. A gated detection scheme is thus needed, where the following assumption is satisfied.

Assumption 5. For any times t t,1 2 inside the gate, t t T1 2 h h-∣ ( ) ( )∣ .

As long as this assumption holds true, we can fire our test pulse at any time inside a gate. Eve’s advantage by
choosing another part of the gate is limited by T .

If Bob’s system suffers fromdetector efficiencymismatch [8], η is not slowly varying at the beginning and the
end of the gate.Wewould therefore like to discard pulses which arrive at these times. Due to jitter in the detector
of the same order ofmagnitude as the detector gate length [48], it is impossible to recognize these events after
detection.We therefore suggest to employ the technique of bit-mapped gating [39]. Any signal detected at the
beginning and end of the gate will have a randomvalue and contribute to the error rate δ. At least a fraction
1 2d-( ) of the detected signalsmust then have passed inside the inner gate, for which assumption 5 is valid.
Another feature of bit-mapped gating is that the two detectors are randomly assigned to bit value 0 or 1 for each
pulse. Thus, our setup is equivalent to a setupwith one detector whichmeasures whether the bit is 0 or 1.We
therefore don’t need tomeasure η for the two detectors seperately. Finally, we note that the detection probability
drops to zero immediately after a detection. Although this violates assumption 5, it does not affect h̄ as we can
only have one detection per gate.

We also need to consider the number of photons in the pulse.We cannot test all possible states; however, for
weak pulses detection probability increases with the number of photons in the pulse. Thus, the following
assumption is natural.

Assumption 6.The detection probability is smaller for a single photon than for anymultiphoton state.

The pulse arrives at Bob in two parts: the first gives detection if the photon travels in the long armof the
interferometer and the last gives detection if the photon travels the short arm. To some extent, ηmay depend on
the phase, polarization or detailed shape of the two parts. However, due to assigning each detector to a random
bit value for each pulse, such dependency should be small. Let the detailed field, including the polarization, be
described by ty ( ) as a function of time.

Assumption 7. For any two distributions t1y ( ) and t2y ( ), I
1 2

h h-y y∣ ∣ .

4. Key generation ratewith estimation ofη

Because of themodifications to Bobmost of the pulses entering the detectors are now in  , Evewould like as
many pulses as possible outside  because for these pulses she can construct states for which 0h = without
getting noticed. To get an upper bound on the fraction of pulses not in  , we note that being outside of  in
both frequency andmode dimensions further decreases the detection probability of these pulses. Therefore, Eve
should send pulses which is outside  only in the dimensionwhere the transmission probability is largest. In
addition, some of the detected pulsesmight be outside  in the time dimension.With probability larger than

5

QuantumSci. Technol. 2 (2017) 044013 ØMarøy et al



1 1 2 max , , 8kz d z z- = - - w{ } ( )

a detection event originates from a photonwith frequency inΩ, arrival time in the gate andwith the samemode
as the test pulse.

If Bob’s test pulse is a single-photon source, theminimumdetection probability h of a single-photon state
in  is bounded by themeasured detection probability of the test pulse, qT:

q q . 9T E T I T tot     h - - - - = -W ( )

Here, E T Itot    = + + +W . For states not in  , we have no such bound. A lower bound for the estimated
averageminimumdetection probability of single-photon states, Eh̄ , is then

q1 1 . 10E T toth z h z- = - -¯ ( ) ( )( ) ( )

Wenowneed to take into account that the parameter h̄ in equation (7) is the average value of η for those nq̄ states
whichwere detected. In theworst-case scenario, the remaining n q1 -( ¯) non-detected states have 1h = , such
that

q q1 . 11Eh h= + -¯ ¯ ¯ ( ¯) ( )

By combining (7) and (11), the expression for the key generation ratewhen using single photons as test pulses is
found to be

R
q

q
h

q

q
h

1
1

1
. 12E
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h d

h
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¯
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¯ ¯
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This is ourmain result, in addition to the corresponding expressionwhen using a faint laser source to produce
the test pulses (section 5.2). Themain difference from the rate resulting from (1) and (2) is the dependence on the
detection rate q̄ and estimated detector parameter Eh̄ . This is due to the possibility that Eve forces detections
when the detectors are in a vulnerablemode and no detectionswhen the detectors are safe. Thus, the detectors
need to be subject to random testing during key exchange. Any successful attempt fromEve to control the
measurement results without introducing errors will showup as 1Eh <¯ during testing. As seen infigure 3, as
long as q̄ remains high, positive key rate is still possible for small Eh̄ . Key gain is possible for q 1E h +¯ ¯ in an
error-free protocol.

5. Key generation ratewith practical equipment

Whenbuilding Bob as described infigure 3, some parts are challenging to implement. In this section, wewill
consider certain solutions to these challenges.

5.1.Detectors with low efficiency
Commercially available detectors used inQKDoperate with a detection efficiency substantially less than 1, with
most avalanche photodiodes having detection efficiency in the 0.1 to 0.5 range [48–50]. This leads to the factor
q 1Eh+ -( ¯ ¯ ) being negative and (12) giving negative key rate. A practical solution to this is to assume that no
matter what Eve does, she cannot improve the single-photon detection efficiency beyond some upper limit maxh .
This leads to some adjustments in the rate. In the third step of Inequality (5), we now get an extra factor maxh in

Figure 3.Key generation rate (equation (12)) as a function of estimated single-photon detection efficiency Eh̄ for different values of the
yield q̄ and error rate d̄ .
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the argument of the entropy function, q h q hi
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Additionally, wemustmake the following adjustment to equation (11):

q q1 , 14E maxh h h= + -¯ ¯ ¯ ( ¯) ( )

Combining equations (13) and (14) gives a rate
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Note that the expression (15) simplifies to

R h h1 16Eh d d= - -¯ ( ( ¯)) ( ¯) ( )

for E maxh h=¯ , i.e. when the detector is working aswell as we expect it to. This is the same rate as one gets if η is
treated as a constant parameter [38]. This rate is depicted infigure 4 for different error rates d̄ . This shows that a
detector with low single-photon efficiency is not a great security risk in itself, but is detrimental to the rate. A
detector that shows aworse single-photon efficiency than expected indicates a possible attack fromEve and
requires evenmore privacy amplification.

5.2. Estimation ofh with a faint pulsed laser
While single photons sources are available [50] and have been used in someQKDexperiments [51, 52], using a
faint laser to produce the test pulse provides an easier setup. For a phase-randomized sourcewithmean photon
numberμ, the produced state is

e e e e0 0 1 1 1 , 17B mr m m s= ñá + ñá + - -m m m m- - - -∣ ∣ ∣ ∣ ( ) ( )

with ms being all states withmore than one photon. This changes the relationship (9) between the detection rate
of the pulses qT and theminimum single-photon detection probability h .We nowhave

q e d e e e1 , 18T tot m h m+ + + - -m m m m- - - -( ) ( ) ( )

or

d q

e
1

1 1
. 19T

tot h
m m

- +
-

-
-

m-
( )

Figure 4.Key generation rate (equation (15)) as a function of estimated single-photon detection efficiency, Eh̄ , in the casewhere Eh̄ , is
equal to the expected value maxh . The rate is plotted for different error rates d̄ , and is valid for any yield q̄ .
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In this case, the key generation rates given by (12) and (15) are still valid, but the limit for Eh̄ in (10) is replaced
with
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The dark count rate per gate per pair of detectors, d, can be upper bounded by turning off the test pulsewhile
stopping Eve’s pulses. As shown infigure 5, for a sufficiently small d, we can choose a smallμ and obtain a result
that is approximately the same as for a single-photon source. The lower line corresponds to a detector with

0.1,h = d 2 10 5= -· as in [53]. The upper line shows amore sensitive detector with 0.4h = , d 2 10 5= -· .
For both detectors, 0totz = = is assumed for simplicity; formultiphoton states, each photon is assumed to be
detected independently.We see that for both detectors, themethod described in the previous subsection, using
an estimate of maxh , is needed for positive rate. For the less sensitive detector, a very lowμ is needed to approach
the true value 0.1h = .

5.3. Testingwithout deflectingAlice/Eve
The element used to deflect/destroy Alice’s pulse during testingmust be able to change quickly between total
transmittance and total absorbance or deflection. Constructing orfinding such an element is challenging. As an
alternative, testing can be donewithout deflecting Alice’s pulse simply by coupling the test pulse into the line
using afiber optic coupler. Assumption 1 is then no longer valid.We can replace it with an assumption bounding
the superlinearity [13] of the detector response.

Assumption 1a. Let qT
¢ be the actual detection probability under testing. Then q q qT T S¢ + + , with qT being

the detection probability if Evewere totally disconnected and S bounding the superlinearity of the detector.

The key generation rates given by (12) and (15) are valid in this approach also, with S replacing E and
setting q q qT T= ¢ - in (9).

The validity of this assumption needs some further discussion. If a detector is blind for pulses below some
threshold intensity and Eve sends pulses slightly below this threshold, clearly q q qT T

¢ > + could be possible.
However, as long as the test pulse is weak ( 1m < ), the increase in detection probability by adding a test pulse to
Eve’s pulse should be small, especially because Evewon’t be able to control the exact number of photons in her
pulse reaching the detector due to losses in Bob. Therefore, S might be considered small.

Security-wise, testingwithout deflecting Eve is possible, but for the secure key rate, such an approach seems
disastrous. For positive key rate, q 1E h +¯ is needed. The valuewe use for Eh̄ is the lower bound given by (10).
This bound is smaller than qT. For positive rate, we therefore need q q 1T+ > , but this is impossible if we use

q q qT T= ¢ - . Thus, either some intensitymodulation of Eve’s pulsemust be done during testing, or stricter
assumptions upon the linear response of the detector are needed.

Figure 5.Estimated single-photon efficiency Eh as a function ofmean photon numberμ of for two different detectors: onewith
detection efficiency 0.1h = and dark count rate 2 10 5-· (lower line) [53] and onewith detection efficiency 0.4h = and dark count
rate 2 10 5-· (upper line).
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6.Discussion and conclusion

Weproposed amethod to estimate the average detection efficiency parameter h̄. Given this parameter, QKD is
secure for all imperfections in Bob, as long as no signals are emitted fromhim. Furthermore, information
leakage fromAlice andBob can be taken into account by the approach in [38]. In this case,morework is needed
to estimate the relevant parameters describing leakage. Alternatively, an approach to estimate leakage is
proposed in [54, 55]. The proof of this approach is also based onKoashi’s proof [6]whichmakes reconciling it
with the proof in this article promising. Anyway, the introduction of new components in Bobmust be
considered in the estimation of information leakage.

When estimating η, the parameters infigure 3, , , ,k T z zw W , I and E , must be determined byAlice and
Bob. If Eve can control these parameters, the assumptions of the security proof are not satisfied. The parameters

, , kz zw W , I and E are controlled by the components in Bob, and can be estimated by testing these
components. Their values are small in a proper setup, and conservative estimates will not affect the key
generation rate considerably.We assume that the conservative estimates apply, unless irreversible and detectable
damage is induced by Eve. Thus, these parameters do not need continuousmonitoring like η. To keep T small, a
bit-mapped gated detection scheme [39] is necessary and sufficient.

The rate is strongly dependent on the yield q̄ and estimated avreage detection efficiency Eh̄ . Realistically, the
yield is less than the detection efficiency, whichmeans that in practice, 1 2E h̄ is needed for a positive key
generation rate. The reason for this can be seen from the attackwhere Eve controls the system as described before
equations (7) and (11). In this case, the bound for the secret key generation rate (12) is tight. Equality is attained
by an attackwhere Eve controls both the incoming pulses and the single-photon detection efficiency. In the
attack, nq 1 h-¯ ( ¯ ) pulses are detected correctly while the detector is blind to single photons. The remaining nqh¯ ¯
detected pulses are detected, with some errors, while the detectors are sensitive to every single-photon pulse. The
final n q1 -( ¯) pulses are vacuumand the detector would have detected them if theywere single photons. This
attack showswhy a decent detector with single-photon efficiency 0.5h = can be considered insecure. If Eve
controls η, she can e.g. increase it to unity for half of the pulses and let the detector be blind to single photons
( 0h = ) for the other half. In the instances when the detector is blind, she can sendweak pulses as in the blinding
attack [12] and get full knowledge of the key. In this case, wewould stillmeasure 0.5h =¯ .

To improve the rate, one needs to verify or assume that Eve does not control the system as described before
equations (7) and (11).We describe one such possible assumption, assuming that Eve cannot increase the single-
photon detection efficiency beyond some value maxh to fool the estimation procedure. This assumption seems
reasonably safe, given that the setup prevents the use of laser damage [46, 47]. Under this assumption, as long as
the estimated single photon Eh is close to maxh , the key rate before error correction is the same as inQKDwith
perfect equipmentmultiplied by the single-photon detection efficiency. Key gain is therefore clearly possible,
but non-unity single-photon detection efficiency is still a disadvantagewith respect to the rate.

Implementation of themodified Bob’s setup is relatively simple in principle. However, it is challenging to
find a sufficiently fast element for deflecting Eve’s pulses during testing.Without it, a stricter assumption on the
behavior of the detector is needed and the rate suffers. The single-photon source in Bob can be replaced by a faint
laser similar to the one inAlice, as long as Bob’s dark count rate is sufficiently small.

The setup andmethod described here can be an important step towards practical secureQKD. Security is no
stronger than theweakest link. BecauseQKD is unconditionally secure with perfect equipment, the
implementation is where Eve has had the best opportunities for attack. Ourmethod gives secure key generation
under realistic and testable assumptions.
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