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Quantum key distribution (QKD) is a
promising method to establish secret keys be-
tween remote users in a post-quantum world,
as QKD protocols are theoretically proved to
be unhackable even by a quantum computer.
However, real QKD implementations might have
loopholes, similar to “side-channels” in classical
cryptography.

One particular known quantum-hacking
strategy involves changing QKD system char-
acteristics by illuminating it with external in-
tense laser light through a quantum channel—
the laser-damage attack [1–4]. In our previ-
ous study, we have shown that an extra isola-
tion component at QKD source output is a good
countermeasure against such a hacking strat-
egy when an eavesdropper uses the continuous-
wave high-power laser to manipulate the QKD
system characteristics [4]. However, according
to the laser-damage theory, three mechanisms
of laser-induced damage might be observed de-
pending on a high-power laser oscillating mode.
These include heating (under the exposure to
continuous-wave lasers, lasers with a pulse du-
ration of more than 1 ns, and high-repetition-
rate pulsed lasers), avalanche ionization (under
the exposure to short laser pulses of 1 ps to
1 ns), and multiphoton ionization (under the ex-
posure to laser pulses with a duration of less than
1 ps) [5].

Here we extend our study to QKD isola-
tion components’ resilience against pulsed high-
power lasers [6]. In this study, we consider the
influence of short-pulsed laser radiation on fiber-
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FIG. 1: Typical wavelength-dependent dip in
isolation of a fiber-optic isolator designed for

operation at 1550 nm.

optic isolators.

Experimental setup and testing pro-
cedure. We have tested several samples
of polarization-independent fiber-optic isolators
that are widely used in commercial QKD sys-
tems. They provide losses of more than 50 dB
to light propagating backwards in an isolator at
1550 nm and thus protect a QKD source against
light-injection attacks.

The experimental setup provided exposure of
isolators to pulsed laser radiation with a pulse
duration of several hundred picoseconds and a
mean power up to 840 mW in four different pulse
generation modes [6]. A high-power laser at a
wavelength of 1064 nm was of choice as it corre-
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FIG. 2: The isolation at 1550 nm versus the
applied power of the pulsed laser. Lines 1 and 2
are the initially measured values of isolation for

the sample 1 and 2.

sponds to the transparency window of the isola-
tors (Fig. 1) and thus minimises the heating of
the component under test by absorption inside
it. The pulsed laser was developed in the labora-
tory of solid-state lasers active media of the Gen-
eral Physics Institute of the Russian Academy of
Sciences [7].

The isolation coefficient and insertion loss
of tested samples were monitored using a laser
diode with a wavelength of 1550 nm and aver-
age power of 10.5 mW. In addition, the sample’s
temperature was monitored using a thermocou-
ple placed on the surface of the isolator.

Testing results. We show a summary of ex-
perimental results [6] for the first two tested sam-
ples in Fig. 2. The minimum achieved isolation
coefficient was 24.7 dB, while the device specifi-
cation guaranteed 59.1 dB. The experimentally
observed isolation change is likely induced by op-
tical damage than heating, because the temper-
ature monitoring indicated that the isolator was
within its operating temperature range. More-
over, contrary to the experimental results with a
continuous-wave high-power laser, the isolation
does not recover to its initial value after the end
of the exposure. We remark that the isolators
pass enough light at 1064 nm that may damage
other components installed behind the last iso-
lator in the QKD source.

Summary. We show that loopholes in a
QKD system might be induced by a variety of
laser oscillating regimes. Our results [6] can be
used to prepare the standards for certification
procedures for assessing the security of quantum
communication systems.
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