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Quantum key distribution (QKD) systems provide quantum-safe key exchange. Therefore, complete security anal-
ysis of implementations of QKD protocols is in the focus of interest of a worldwide information-security commu-
nity. For today, a number of QKD loopholes are closed by countermeasures, which are also considered in emerging
QKD security evaluation and certification [1–3]. However, new threats to practical QKD implementations are still
found, such as the laser-damage attack, which is a powerful hacking strategy. In investigations, CW laser radiation
is most often used, but in contrast to it, the interaction of pulsed laser radiation with optical materials may lead to
a wide range of effects, like nonlinear effects, dielectric breakdown, etc.

Here we test fiber-optic components from QKD systems under high-power lasers at several lasing regimes
and operating wavelengths. Our goal is to develop a strong countermeasure against the laser-damage attack on
QKD sources and a common methodology of characterisation of fiber-optic components for QKD, including the
choice of lasing regimes for certification tests. We test fiber-optic isolators under illumination by three high-power
lasers: 1550-nm CW laser, 1061-nm single-pulsed laser (SPL), and 1061-nm multi-pulsed laser (MPL) [4-6]. The
results are summarised in Table 1. We observe a similar temporary decrease in isolation, which recovers after
illumination, in all cases. After a permanent damage by illumination, CW laser causes the loss of transparency
in both directions, while the pulsed lasers lead to permanent (or very long-term) decrease in isolation by 10.8–
31.4 dB without a drastic loss of transparency in the forward direction. Damage by both pulse trains and single
laser pulses leads to similar changes in optical characteristics. However, changes induced by MPL might occur at
lower average powers comparing to those induced by SPL. We conclude that a countermeasure proposed earlier
[4], consisting of adding a sacrificial fiber-optic isolator at the QKD source’s output, is still effective against the
laser-damage attack by a 1061-nm sub-nanosecond laser.
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Table 1: Summary of testing results of isolators [4,5]. All measurements are at 1550 nm.
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number

Laser regime
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power (W)
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insertion loss (dB)
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(dB)

Insertion
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1-1 SPL, 1 MHz 65.4 0.60 29.6 23.4 1.06 34.0 16.1
1-2 MPL, 16 MHz 59.2 0.60 24.5 2.5 0.83 40.7 16.2
2-1 SPL, 1 MHz 69.6 0.68 25.3 11.3 1.06 41.3 6.8
2-2 MPL, 16 MHz 59.8 0.53 26.8 2.7 1.05 49.0 6.2
2-3 CW 62.1 0.55 27.6 0.9 3.83 87 93.5
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