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Bright‑light detector control 
emulates the local bounds 
of Bell‑type inequalities
Shihan Sajeed1,2,3,4*, Nigar Sultana1,3, Charles Ci Wen Lim5,6 & Vadim Makarov7,8,9

it is well‑known that no local model—in theory—can simulate the outcome statistics of a Bell‑type 
experiment as long as the detection efficiency is higher than a threshold value. For the Clauser–Horne–
Shimony–Holt (CHSH) Bell inequality this theoretical threshold value is η

T
= 2(

√
2− 1) ≈ 0.8284 . 

On the other hand, Phys. Rev. Lett. 107, 170404 (2011) outlined an explicit practical model that can 
fake the CHSH inequality for a detection efficiency of up to 0.5. In this work, we close this gap. More 
specifically, we propose a method to emulate a Bell inequality at the threshold detection efficiency 
using existing optical detector control techniques. For a Clauser–Horne–Shimony–Holt inequality, 
it emulates the CHSH violation predicted by quantum mechanics up to η

T
 . For the Garg–Mermin 

inequality—re‑calibrated by incorporating non‑detection events—our method emulates its exact 
local bound at any efficiency above the threshold. This confirms that attacks on secure quantum 
communication protocols based on Bell violation is a real threat if the detection efficiency loophole is 
not closed.

More than 50 years ago, John Stewart Bell showed that any physical theory based on the assumptions of locality 
(i.e., nothing can communicate faster than light) and realism (i.e., physical properties of an object are fixed and 
pre-defined) must satisfy a set of statistical criteria called Bell  inequalities1. That is, if a Bell-type experiment is 
performed and the results show a violation of a Bell inequality, then the underlying physical process cannot be 
explained by a local theory. This kind of tests are called Bell tests and the violation of the inequality is called Bell 
violation. Since the earlier demonstrations utilizing cascade decays in  atoms2–5, Bell violations have been observed 
in tests utilizing nonlinear optical  processes6–9,  ions10, neutral  atoms11, Josephson  junction12 and solid state 
 qubits13. The implications of the Bell test not only change our understanding of nature, but also find application 
in device independent (DI) quantum  communications14–16, randomness generation and  amplification17–19, DI-
verified quantum  computation20, 21, certifying quantum  devices18, 22, 23 and DI bit  commitment24. Entanglement, 
a necessary precondition for unconditional  security25, 26 in quantum key distribution, can also be certified from 
the violation of a Bell inequality, independently of the underlying implementation details. This paves the way 
for the device-independent tests of  security27, 28. However, for the observed Bell violation to be conclusive, it is 
important that the Bell test is loophole-free.

More specifically, a loophole-free Bell test is an entanglement experiment that requires multiple implementa-
tion loopholes such as the detection, locality, and measurement-independent loopholes to be closed simultane-
ously. Here, we focus on the detection loophole, and defer the rest to Ref.29. In general, the detection loophole is 
a scenario in which the observed Bell violation (a test statistics) is no longer reliable as the measurement sample 
and may not be a true representative of the population (i.e., the entire measurement statistics). Crucially, this situ-
ation commonly happens in practice as practical detectors have finite detection efficiencies and hence one could 
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end up with samples that are non-representative. While the detection loophole is not an issue for non-adversarial 
settings, the same is not true for the case of quantum cryptography since an adversary can take advantage of it 
to come up with a local model to fake Bell  violations30. For this reason, much effort has been devoted to closing 
the detection loophole in practice.

How a local model can theoretically simulate non-local correlations—taking advantage of the detection loop-
hole—has already been reported in the  literature31, 32. However, methods of experimentally implementing such 
correlations using practical means have been rarely discussed, despite its importance in practical quantum cryp-
tography. The state-of-the art method is arguably that of Ref.30, where the authors demonstrated how an adversary 
could implement a local model using existing optical detector control methods to violate a Bell inequality for 
active basis choice schemes. However, their local model is effective only for a detector efficiency of up to η = 0.5 , 
while theoretically it is possible to fake the inequality for a threshold efficiency of up to ηT = 2(

√
2− 1) ≈ 0.8284 

(here, efficiency η refers to the probability that one party observes a conclusive outcome given a measurement is 
made). In this article, we discuss how to experimentally close this gap and fake the violation at higher efficien-
cies. More specifically, we show how existing optical detector control  methods33–35 can be exploited to both fake 
the violation of the standard Clauser–Horne–Shimony–Holt (CHSH) Bell test all the way up to its threshold 
efficiency and simulate the local bound of the more general Garg–Mermin Bell test. Our results point out once 
again that when Bell tests are performed for certifying randomness, guaranteeing security in quantum com-
munications, or detecting non-locality, they should either be performed with an efficiency at which the test is 
robust against detection loopholes, or should use the bound given by more general inequalities (for example, 
Eq. (3) below). Otherwise, existing optical detection control methods may allow to implement a local model to 
simulate the results of the test.

The article is organized as follows. First we outline the assumptions and methodology of the Bell test that we 
consider in this article. Then we present several local models that allow an adversary to implement a practical 
setup to fake the Bell test or emulate the local bounds given by the inequalities. Then we make our conclusion.

Assumptions for Bell test
The experimental setup of the CHSH Bell test for two parties with binary inputs and  outputs36 is shown in Fig. 1. 
The test assumes that a source of entangled photon pairs sends each member of the pairs to two legitimate 
parties, Alice and Bob. Alice randomly measures the polarizations along direction α0 or α1 and Bob randomly 
along β0 or β1 as shown in Fig. 1. The measurement along a particular direction is performed with the help of a 
rotatable half wave plate (HWP) followed by a polarization beamsplitter (PBS) and two single photon detectors. 
This type of analyzer is called an active basis choice analyzer. The possible polarization measurement outcomes 
expected at Alice and Bob are PA ∈ {α0,α⊥

0 ,α1,α
⊥
1 } and PB ∈ {β0,β⊥

0 ,β1,β
⊥
1 } , and they are mapped into out-

comes {+,−, ?} × {+,−, ?} ; see Fig. 1 for outcome assignments.
We assume that Alice and Bob are situated far apart, so that the locality loophole is closed. However, due to the 

finite efficiency of the detectors and optical losses in the setup, it is not possible to measure the polarization of all 
the photons. So, the final statistics are calculated using only the detected events, i.e., events in which photons have 
been detected on both sides. In this case, for each pair of measurement settings {αi ,βj} with ij ∈ {00, 01, 10, 11} 
chosen by Alice and Bob, the correlation function E(α,β) is given by

where Nα,β(i, j) represents the number of coincidences with successfully detected outcome 
{i, j} ∈ {++,+−,−+,−−} for a particular setting (α,β) . The associated CHSH Bell inequality is then

Quantum mechanics predicts a maximum violation of S = 2
√
2 for the setting choice α0 = −78.75◦ , α1 = 56.25◦ , 

β0 = 11.25◦ , β1 = −33.75◦37, and even stronger correlations are algebraically possible in theory leading to S ≤ 4
38. However, as long as the efficiency of a measurement is η = 1 , all local models must necessarily satisfy Eq. (2). 
Unfortunately, this is not true for η < 1 . In particular, when η is less than some threshold ηT , it is possible to devise 
local models that violate Eq. (2). For the CHSH test described here, ηT = 2(

√
2− 1) ≈ 82.84%39. In order to avoid 

this, these tests are performed in the region η > ηT . Note that the CHSH test is not the most robust Bell test as one 

(1)E(α,β) =
Nα,β(++)+ Nα,β(−−)− Nα,β(+−)− Nα,β(−+)

Nα,β(++)+ Nα,β(−−)+ Nα,β(+−)+ Nα,β(−+)
,

(2)SCHSH = E(α0,β0)+ E(α1,β0)+ E(α1,β1)− E(α0,β1) ≤ 2.

+ +

_ _Alice Bob

HWP

α0

α1

PBS HWP PBSSource

α1
α0 β0

β1

β0

β1

Figure 1.  Setup for a CHSH test. The measurement angles shown are arbitrary. Here, for each party, the set 
of possible outcomes is given by {+,−, ?} , where “ + ” (“−”) are assigned when only the lower (upper) detector 
clicks and the other detector is silent. “?” is assigned when none of the detectors registers a detection.
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can further reduce the detection threshold by looking at marginal correlations (or singles statistics). This is given 
by the Eberhard Bell  inequality37, which has a detection threshold of ηT = 2/3 ≈ 66.67% . Alternatively, one can 
include the ‘efficiency’ in the inequality and recalibrate it as a function of η as proposed by Garg and  Mermin39

The recalibrated CHSH Bell inequality gives the local bound of S′ as a function of η , i.e., how much violation is 
required to certify non-locality for a given efficiency. This is shown by the solid (red) curve in Fig. 2. Note that, 
when η = 1 , Eq. (3) becomes Eq. (2) since the post-selected correlation set becomes the entire measurement set. 
Also, when η ≤ 2/3 , one can always set the bound to be 4, which is the maximum value attainable by the sum of 
four correlation functions. Thus, a local model that can simulate Eq. (3) for efficiency range 2/3 ≤ η ≤ 1 would 
be the optimum model to exploit detection loopholes in a Bell test. We present it in the next section.

Faking Bell inequality with improved efficiency
For ease of understanding, we will go step by step. First, we review an existing local model that can fake Eq. 
(2) for η ≤ 1/230 and point out its limitations. Then we propose a modification to this model that enables it to 
fake Eq. (2) up to η ≤ 2/3 . We then present our perfect model that can not only fake Eq. (2) for η ≤ 2(

√
2− 1) 

but also emulate the local bounds given by Eq. (3). Since all three models exploit an existing detector control 
method—bright-light detector  control33–35—we first recap it.

Bright-light detector control: Single-photon detectors used in a Bell test may become insensitive to single 
photons when exposed to bright  light33, 40. Even in this mode, they can produce a detection event (‘click’) when 
additionally exposed to a light pulse of intensity I equal to or higher than a threshold level Ith . This allows an 
adversary Eve to have control over the detectors by tailoring I. For example, if the measurement basis matches 
that of the incoming light pulse, then all of it is incident on a single detector with intensity I ≥ Ith and results 
in a detection event. However, in case of basis mismatch, the incoming light is split between two detectors with 
intensity I/2 < Ith (assuming a conjugate basis) and none of the detectors click. This is how the adversary can 
have control over detection outcomes. The feasibility of bright-light control has been confirmed numerous times, 
with both detectors based on avalanche  photodiodes33, 34, 41–47 and superconducting  nanowires40, 48, 49. Next, we 
show how an adversary can exploit it to implement a local-realistic model.

Conditions for violation: Let us assume that an arbitrary value of |S| ≤ 4 needs to be simulated by the 
local model. Assuming symmetry for each setting combination (α,β) , this implies |E| = S/4 . Assuming 
Nα,β(++) = Nα,β(−−) = Nsim and Nα,β(+−) = Nα,β(−+) = Ndif  , (where 2Nsim + 2Ndif = 1 ), Eq. (1) can 
be written as

This implies that under the assumptions specified above, an arbitrary correlation value E requires the ratio of 
similar to different outcomes to follow Eq. (4). For example, the quantum mechanical prediction of S = 2

√
2 , 

which corresponds to E = ±1/
√
2 , requires

Below we describe several techniques by which an active attacker can satisfy this condition.
Existing model: A straightforward approach to force the outcomes to follow Eq. (4) is to generate polarization 

combinations at the source with desired statistics and then force deterministic outcomes during the measurement, 

(3)
S′(η) = E(α0,β0)+ E(α1,β0)+ E(α1,β1)− E(α0,β1)

≤
4

η
− 2.

(4)
Nsim

Ndif
=

1+ E

1− E
.

(5)Nsim = (3± 2
√
2)Ndif.
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Figure 2.  Local bounds for recalibrated inequality S′ [Eq. (3)], improved faking model [Eq. (6)], and perfect 
faking model. The quantum mechanical bound 2

√
2 is also shown. The improved faking model achieves this 

bound at η ≈ 0.6678 and the perfect model at η = 2(
√
2− 1) . The perfect model can fully emulate Eq. (3) for 

efficiency range 2/3 ≤ η ≤ 1.
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as done in Ref.30. We assume each polarization combination is generated according to the probabilities given 
in Table 1, where Nsim and Ndif  obey Eq. (4). We assume the intensity is tailored to bring the bright-light control 
method into play, i.e., matched (mismatched) bases lead to deterministic outcome with unity probability (no 
detection). Let’s consider the case when the source generates polarization combination α0β0 (α0β1) with probabil-
ity Nsim/4 (Ndif/4) . They result in coincidences only for the setting α0β0 (α0β1) and lead to deterministic similar 
(similar) outcomes with unity probability. For the remaining three setting choices, no coincidence happens and 
the outcomes have no effect on the correlation. This is true for all the polarization combinations in Table 1. In this 
way, it is possible to generate outcomes to match Eq. (4) for any desired value of E and achieve any value of S up 
to S1 = 4 . A problem with this method, however, is that half of the time the measurement basis does not match 
the preparation basis and results in no detection. Thus the efficiency at each side η1 = 0.5 . This is a limitation in 
Ref.30. Next, we outline how to implement an improved local realistic model with a higher detection efficiency.

Improvement to existing model: Above we have recapped the existing first method that leads to CHSH 
parameter S1 = 4 with an efficiency η1 = 0.5 . We now generate a second method that leads to CHSH parameter 
S2 = 2 with efficiency η2 = 1 . For this, let’s assume that the source always sends polarization α (β) to Alice (Bob), 
where α ( β ) is polarized at an angle that is midway between α0 and α1 ( β0 and β1 ). In this case, irrespective of the 
measurement settings, the input intensity I is split at a ratio of cos2(φA) : sin2(φA) between the two detectors in 
Alice and at cos2(φB) : sin2(φB) in Bob. Here, φA = |α1 − α0|/2 and φB = |β1 − β0|/2 . Tailoring the intensity 
to satisfy I cos2(φ) ≥ Ith and I sin2(φ) < Ith at the respective sides ensures that only one of the detectors clicks 
(with outcome + ), irrespective of the basis choice, and efficiency stays 1. This will result in E = +1 for each 
measurement setting and lead to a CHSH parameter S2 = 2 with an efficiency η2 = 1 . Note that this method 
(presented here for its ease of explanation) results in only ++ outcomes. It can be symmetricized to produce all 
four outcomes ++ , +− , −+ , −− , which we omit for brevity.

Thus, we have outlined two independent approaches to control S: the first one leads to S1 = 4 with an effi-
ciency η1 = 0.5 , while the second one leads to S2 = 2 with efficiency η2 = 1 . An adversary can then use a proba-
bilistic mixture of these two approaches to increase the faking efficiency of the Bell test. With probability 
p1 (p2 = 1− p1) she uses the first (second) method. The input intensity needs to be tailored to 
2Ith > I ≥ Ith/ cos

2(φ) to ensure that the first (second) method leads to detection efficiency of η1 = 0.5 ( η2 = 1 ) 
and results in S1 = 4 ( S2 = 2 ). The resultant efficiency as seen by Alice and Bob will be η =

√

p1η
2
1 + p2η

2
2  and 

the improved CHSH parameter will be

The variation of Simp with η is shown in Fig. 2. The left-most point (η, Simp) = (0.5, 4) corresponds to the first 
method with p2 = 0 . As p2 is increased, Simp becomes smaller with increasing efficiency and eventually becomes 
(η, Simp) = (1, 2) at the rightmost point with p2 = 1 . Quantum mechanical prediction S = 2

√
2 is obtained at 

p2 ≈ 0.2612 and the corresponding efficiency is η ≈ 0.6678 . This is still lower than the threshold efficiency limit 
ηT = 2(

√
2− 1) ≈ 0.8284 for CHSH inequality. To achieve higher local bounds, one more degree of freedom 

needs to be introduced, as discussed in our next model.
Perfect local model: Now we present a perfect local model that can not only fake a violation of inequality 

(2) for η ≤ 2(
√
2− 1) but also emulate the local bounds given by Eq. (3) for 2/3 ≤ η ≤ 1 . For this model, we 

make three assumptions: 

1. The adversary at the source always generates one of the two polarization combinations α0β0 and α1β1 with 
equal probability of 1/2 each.

2. The adversary tailors the light intensity towards Bob in such a way that they result in a deterministic out-
come with unity probability. For the ease of analysis we will assume that at Bob, the polarization β0 ( β1 ) 
leads—with unity efficiency—to deterministic outcome “ + ” (“+ ”) when measured along β0 and “−” (“+ ”) 
when measured along β1 (however, any other outcomes will also do as long as they are deterministic and 
have unity probability).

3. At Alice, whenever the measurement basis matches (does not match) that of the incoming light, a determin-
istic “ + ” (random) outcome is produced with probability a (b), and no-detection outcome with probability 
1− a ( 1− b).

(6)Simp =
p1S1η

2
1 + p2S2η

2
2

η2
.

Table 1.  Probability of each polarization combination generated by the source in the existing faking  model30. 
They are normalized to maintain 2Nsim + 2Ndif = 1.

Towards Alice

Towards Bob

β0 β⊥
0

β1 β⊥
1

α0 Nsim/4 Ndif/4 Ndif/4 Nsim/4

α⊥
0

Ndif/4 Nsim/4 Nsim/4 Ndif/4

α1 Nsim/4 Ndif/4 Nsim/4 Ndif/4

α⊥
1

Ndif/4 Nsim/4 Ndif/4 Nsim/4
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For details on how the above assumptions can be met in practice, please see the Methods. For each setting, the 
possible outcomes at Alice and Bob and the corresponding coincidence probabilities are shown in Table 2. For 
any measurement setting {α,β} , the correlation function E is related to a and b as

and the coincidence probability is

Solving Eqs. (7) and (8), we get,

Thus, to emulate the local bounds in an actual experiment having detector efficiency η , an adversary can use Eq. 
(3) to calculate the maximum correlation value E corresponding to that η , and then use Eq. (9) to set the values 
of a, b. As long as Eq. (9) is maintained, the single click probability during the test is equal to η and the CHSH 
value is equal to the bound as shown by the thick black dashed line in Fig. 2. For example, for a Bell test done 
with detector efficiency η = 2(

√
2− 1) , the local bound is S′ = 2

√
2 according to Eq. (3). This can be attained—

according to Eq. (9)—if a = 12
√
2− 16 = 0.97 and b = 40− 28

√
2 = 0.40 , which leads to |E| = 1/

√
2 . Similarly, 

the local bound of S′ [Eq. (3)] can be achieved for any 2/3 ≤ η ≤ 1 . For η ≤ 2/3 , the local bound reaches the 
algebraic maximum S′ = 4 [Eq. (3)]. Note that this method leads to asymmetric detection efficiency, as Bob’s 
efficiency is always higher than Alice’s. However, this can be avoided by reversing the roles of Alice and Bob half 
of the time. This concludes our local model that can emulate the local bounds given by Eq. (3) for every value 
of 2/3 ≤ η ≤ 1.

conclusion
Although it is a known fact that a local theory can violate a Bell inequality up to a threshold detection efficiency, it 
is rarely addressed in the literature how an adversary can actually implement it. In this work, we have shown that 
the existing detector control method can be exploited to implement a local model that can fake the CHSH Bell 
inequality [Eq. (2)] up to the threshold efficiency. Our model can also simulate the local bound of the Garg–Mer-
min Bell inequality [Eq. (3)] for efficiency over 2/3. Our results point out that whenever Bell violations are used 
for testing less-conventional theories, implementing device-independent quantum secure  communication27, 
certifying  randomness18 and nonlocality, loophole-free Bell  tests51–53 should be performed. We would like to point 
out that there are Bell inequalities that use non-maximally entangled states with threshold efficiency ηT = 2/337; 
however, whether our model is effective against those would be a task for future study.

Methods
Strategies for controlling  a and b. Here we show that regardless of the value of α0 and α1 an adversary can 
satisfy the assumption that whenever the Alice’s basis matches (does not match) that of the incoming light, a 
deterministic (random) outcome is produced with probability a (b). For simplicity, let us assume the case when 

(7)|E| =
a
2 + b

4 − b
4

a
2 + 2 b

4

=
a

a+ b
,

(8)
a

2
+

b

2
= η2.

(9)
a = 2Eη2

b = 2(1− E)η2

Table 2.  Possible outcomes and the corresponding probabilities for different measurement settings in the 
perfect model. Outcome ij ∈ {+,−, ?} × {+,−, ?} represents i at Alice and j at Bob. It can be verified that the 
conditional probability distributions are no-signalling50.

Polarization emitted from source Measurement outcome

Joint probability at 
measurement setting

α0β0 α1β0 α0β1 α1β1

α0β0

++ a b/2 0 0

+− 0 0 a b/2

−+ 0 b/2 0 0

−− 0 0 0 b/2

?+ 1− a 1− b 0 0

?− 0 0 1− a 1− b

α1β1

++ b/2 a b/2 a

+− 0 0 0 0

−+ b/2 0 b/2 0

−− 0 0 0 0

?+ 1− b 1− a 1− b 1− a

?− 0 0 0 0
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the adversary sends a light polarized at angle α0 towards Alice (strategies for the other polarizations are similar). 
Then, with probability (a− b) , she sends light polarized at angle α0 which, when measured in the same (different) 
basis, results in detection (no detection) if intensity is tailored properly (see Table 3). With probability b/2, she 
sends the light at an angle midway between α0 and α1 (α⊥

1 ) at angle α0 + φ1 (α0 − φ⊥
1 ) . Here, φ1 = |α0 − α1|/2 , 

φ⊥
1 = |α0 − α⊥

1 |/2 . As a result, when the basis matches, for both the cases, outcome is α0 while for basis mismatch 
the outcome is α1 and α⊥

1  with probability b/2. The condition for this is I sin2 φ < Ith < I cos2(φ) for φ ∈ {φ1,φ⊥
1 } 

as shown in Table 3. For the remaining times (with probability 1− a ), the adversary sends vacuum. Overall, 
from Table 3, it can be seen that when the basis matches that of the incoming light, it results in a deterministic 
outcome with probability a; while when the basis mismatches, it results in a random outcome with probability b. 
This supports the practicality of our assumption. Note that this method leads to asymmetric detection efficiency, 
as Bob’s efficiency is always higher than Alice’s. However, this can be avoided by reversing the roles of Alice and 
Bob half of the time.

We have so far assumed that the blinded detector is controllable as a step function: for I < Ith the click prob-
ability is 0, and for I ≥ Ith it is 1. This is of course a  simplification33–35, 40–47. Real detectors have noise, which 
leads to them having two thresholds Inever < Ialways , with click probability 0 for I ≤ Inever and 1 for I ≥ Ialways . 
In the range Inever < I < Ialways , the click probability gradually increases from 0 to 1. These thresholds depend 
on the blinding power and regime. Furthermore, no two detector samples are identical, and require tweaking 
the faked states to achieve perfect or near-perfect  control34, 35, 44. Generally, if the ratio Ialways/Inever can be made 
sufficiently small, perfect control can be achieved. These issues are device-specific and should be treated at the 
implementation stage. However, the ability to obtain an arbitrary click probability by adjusting I may allow an 
alternative method of controlling a and b, as we show below.

Practical detectors, when blinded, gradually increase their click probability from 0 to 1 in a certain range of 
trigger intensity I33–35, 40–47. This can be used to obtain probabilistic detections. To illustrate this, we have meas-
ured control characteristics of one avalanche photodiode detector in a commercial QKD system  Clavis245, 54. At 
a particular continuous-wave blinding power, we varied the trigger pulse energy and recorded the correspond-
ing click probability as shown in Fig. 3. The result shows that it is in principle possible for an adversary to select 
a value of trigger pulse intensity I (without varying the polarization by ±φ ) that in a matching basis leads to 
click probability 1 in one detector, and when halved owing to basis mismatch, leads to a random click in either 

Table 3.  Strategy to practically simulate deterministic (random) outcome with efficiency a (b). Here, 
φ0 = |α0 − α1|/2 , φ1 = |α0 − α⊥

1 |/2 , and ‘x’ represents no detection.

Probability Intensity Polarization

Outcome when basis

Required value of IMatches Mismatches

a− b I α0 α0 x I ≥ Ith , I cos2(2φ0) < Ith , I sin2(2φ0) < Ith

b/2 I α0 + φ0 α0 α1 I sin2(φ0) < Ith ≤ I cos2(φ0)

b/2 I α0 − φ1 α0 α⊥
1 I sin2(φ1) < Ith ≤ I cos2(φ1)

1− a Vacuum x x

255 260 265 270 275
0

0.5

1

C
lic

k 
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168 173 178 183 188
0

0.5

1
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C
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(a)

(b)

Figure 3.  Control characteristics of a detector in commercial quantum key distribution system  Clavis245, 

54, responding to a short trigger pulse atop continuous-wave blinding power of (a) 740 µW and (b) 367 µW . 
Wavelength of light was ∼ 1.55 µm.
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detector with probability ∼ 0.40 . However, some double clicks (i.e., simultaneous clicks in both detectors) will 
happen in this strategy. Their handling in a Bell test will need to be considered.
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