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Decoy-state quantum key distribution (QKD) is the standard technique in current quantum cryptographic
implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation
is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key
effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be secure
in practice. Here, we perform an experiment that for the first time shows secure QKD with imperfect state
preparations at long distances and achieves rigorous finite-key security bounds for decoy-state QKD against
general quantum attacks in the universally composable framework. We implement both decoy-state BB84 and
three-state protocol on top of a commercial QKD system and generate secure keys over 50 km standard telecom
fiber based on a novel security analysis that is loss-tolerant to source flaws. Our work constitutes an important
step towards secure QKD with imperfect devices.

I. INTRODUCTION

Quantum key distribution (QKD) enables an uncondition-
ally secure means of expanding secret keys between spatially
separated honest parties [1, 2]. It offers information-theoretic
security for communication in theory [3]. In reality, how-
ever, for implementations that are mainly based on attenuated
laser pulses, the occasional production of multi-photons and
channel loss make QKD vulnerable to various subtle attacks,
such as the photon-number-splitting attack. Fortunately, the
decoy-state method [4–6] solves this security issue perfectly
and dramatically improves the performance of QKD with
faint lasers. Several experimental groups have demonstrated
that decoy-state BB84 is secure and feasible under real-world
conditions [7–9]. As a result, decoy-state method has be-
come a standard technique in many current QKD implemen-
tations [10–13].

Before this work, unfortunately, previous QKD experi-
ments [7–13] have three important drawbacks. First, in the
key rate formula of all existing experiments, it is commonly
assumed that the phase/polarization encoding is done per-
fectly. One the one hand, the single-photon components of
the four BB84 states are assumed to remain strictly in two di-
mensions of Hilbert space. We call this qubit assumption. In
practice, none of previous works have verified this assump-
tion. Note that an attack to exploit the higher dimensional-
ity of state preparation has been proposed in [14]. On the
other hand, the encoding devices are widely assumed to be
perfect without modulation errors. This is a highly unrealis-
tic assumption and may mean that the key generation is ac-
tually insecure in a real QKD experiment. What if we use
a key rate formula that takes imperfect modulation into ac-
count? Standard Gottesman-Lo-Lütkenhaus-Preskill (GLLP)
security proof [3] does allow one to do so. Unfortunately, the
key rate will be reduced substantially because the GLLP for-
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malism is very conservative and the resulting protocol is not
loss-tolerant. Both key rate and distance will suffer greatly
from the modulation errors. This might be the major reason
that previous experiments commonly ignored source flaws.
We remark that source flaw is a serious concern in not only
decoy-state BB84 but also measurement-device-independent
QKD [12, 13], quantum coin flipping [15] and blind quantum
computing [16].

Second, the security claims made by most of experiments
were obtained under the assumption that the eavesdropper
(Eve) is restricted to particular types of attacks (e.g., collec-
tive attacks) or that the finite-key analysis is not rigorous (e.g.,
the security does not satisfy the universally composable se-
curity definition [17, 18]). Unfortunately, such assumptions
cannot be guaranteed in practice. Although Ref. [19] reports
an attempt implementing the rigorous finite-key analysis pro-
posed in [20], both the theory and experiment assume a per-
fect signal-photon source without decoy states. Very recently,
Lim et al. provide for the first time tight and rigorous secu-
rity bounds against general attacks for decoy-state QKD [21].
This analysis is based on a combination of a rigorous security
proof [20] and a novel finite-data analysis for the decoy-state
method [22]. However, a real-life implementation to demon-
strate the feasibility of this analysis is still missing.

Third, the security analysis of previous experiments often
relies on rotational symmetries [3]. Hence, four BB84 states
are required for the estimation of the so-called bit error rate
and phase error rate. QKD protocols with three states, i.e.,
three-state protocols, have been proposed [23, 24], but to our
knowledge, a decoy-state implementation of three-state pro-
tocol has not been reported in the literature.

II. RESULTS

In this paper, we perform a decoy-state QKD experiment
that for the first time shows secure QKD with imperfect source
at long distances. Our implementation is based on a novel pro-
posal [25], which allows QKD protocols that are loss-tolerant
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FIG. 1: Setup. Optical setup for ID-500 plug&play QKD system [26]. SPD1/SPD2, single-photon detector; C, circulator; PMA/PMB , phase
modulator; BS, beam splitter; PBS, polarization beam splitter; CD, classical photo-detector; VOA, variable optical attenuator; DL, delay line;
FM, Faraday mirror. PMA randomly selects a phase from {0, π/2, π} for the three-state experiment and from {0, π/2, π, 3π/2} for the
decoy-state BB84 experiment.

Parameter Three-state BB84
sLz,0 3.22× 105 3.21× 105

sLz,1 1.30× 107 1.31× 107

ez 2.98% 2.89%
eUx,1 11.49% 6.01%
l 2.60× 106 7.70× 106

RL 5.21× 10−5 1.54× 10−4

TABLE I: Experimental results. These values are obtained by plug-
ging the raw counts into the decoy-state estimations (see Supplemen-
tary) and the key rate formula of Eq. (1).

to state-preparation flaws. We call it loss-tolerant protocol.
The key insight is that as long as the single-photon com-
ponent remains a qubit (though, the devices that manipulate
them can have modulation errors), Eve can not enhance state-
preparation flaws by exploiting the channel loss. It requires no
side channel in the source. This is a reasonable assumption,
as the source can be placed in Alice’s protected environment
outside of Eve’s influence and Alice can in principle guarantee
this assumption via quantifying her devices locally.

Theory: On the theoretical side, our contributions are as
follows. First, we perform a detailed analysis on the qubit as-
sumption in a standard one-way phase-encoding system and
have verified such assumption with high accuracy by using
standard optical devices. Second, building on [25], we pro-
pose a finite decoy-state method for QKD with three states
and show that QKD with three states gives almost the same
key rate as BB84 in a practical setting with a reasonable
data-set. The three-state scheme can simplify conventional
BB84 implementations, especially for those based on four
laser sources [8, 11], where one could keep one laser just as
back-up in case certain laser fails, without any decrease in
performance. Third, based on [21], we provide a rigorous
finite-key analysis for the loss-tolerant protocol, thus make
this protocol applicable in a practical setting. The εsec-secret
key length in the Z basis is given by [21]

ℓ ≥ sLz,0 + sLz,1 − sLz,1h
(
eUx,1

)
− leakEC − 6 log2

21

εsec
− log2

2

εcor
, (1)

where h(y)=−y log2 y− (1− y) log2(1− y) is the binary en-
tropy function; sLz,0, sLz,1 and eUx,1 are, respectively, the lower
bound of vacuum events, the lower bound of single-photon
events, and the upper bound of the phase error rate for single-
photon events in Z basis, which can be estimated using the
decoy-state method [21]; leakEC = nz,µfeh (ez) is the size
of the information exchanged during error-correction, where
nz,µ and ez denote respectively the gain counts for signal state
and quantum bit error rate (QBER) and fe ≥ 1 is the error
correction inefficiency function; 6 log2

21
εsec

and log2
2
εcor

are
respectively the secrecy and correctness parameter. ℓ quanti-
fies the lower bound of key length and the key rate is given by
RL=ℓ/N with N denoting the total number of signals (pulses)
sent by Alice. This key formula uses the min-entropy se-
curity proof [20] and fulfills the composable security defini-
tion [17, 18].

Experiment: On the experimental side, with a commercial
ID-500 plug&play QKD system [26] (see Fig. 1), we perform
the first decoy-state QKD demonstration considering source
flaws. We quantify these flaws experimentally and include
them in the key rate formula. We find that in ID-500 sys-
tem, the voltage value {0, 0.77, 1.59, 2.36} V is used for the
phase modulation {0, π/2, π, 3π/2} and the modulation error
δ ≤ 0.127. We have also measured such error in an updated
version of commercial plug&play system (IDQ Clavis2) and
found that δ ≤ 0.147.

Based on the loss-tolerant protocol, we successfully gen-
erate secure keys over 50 km standard telecom fiber. Mean-
while, we for the first time apply the tight decoy-state finite-
key analysis [21] in a real-life implementation and generate
keys that are secure against general attacks in the univer-
sally composable framework. Furthermore, in addition to the
decoy-state BB84, by modifying the commercial QKD sys-
tem, we perform the first decoy-state experiment with only
three encoding states.

In the implementation of the three-state protocol, ID-500
system allows one to freely modify (via software) the four
voltage values applied on Alice’s PM. In our implementation,
we set Alice’s modulation voltage values to be {0, 0.77, 1.59,
0.77} V and thus operate Alice to send three encoding phases
{0, π/2, π}, where the probability ratio for these three phases
is 1 : 2 : 1. We chose to operate the system for about 3
hours and send a total number of pulses N=5× 1010. Before
the experiment, we performed a numerical optimization [10]
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FIG. 2: Decoy-state QKD with source flaws in a practical setting.
The main figure is for the three-state protocol based on our secu-
rity analysis, while the inserted figure is for the decoy-state BB84
protocol based on GLLP security analysis. The power of our secu-
rity analysis is explicitly shown by the fact that GLLP delivers a key
rate that decreases rapidly when δ increases. The maximal tolerant
distance is about 9 km for our QKD system (green dashed-dotted
curve in the inserted figure). In contrast, our analysis can substan-
tially outperform GLLP and it is loss-tolerant to source flaws. Our
QKD set-up can be made secure over 60 km and the secure key rate
is almost the same as the case without considering source flaws (i.e.,
assuming δ=0).

on the implementation parameters. The experimental results
are listed in Table I. Based on the three-state (BB84) proto-
col with our loss-tolerant security analysis, we got a QBER

2.98% (2.89%) and a lower bound of secure key generation
rate 5.21 × 10−5 (1.54 × 10−4) per pulse, and about 2603
(7700) kbit of unconditionally secure keys are exchanged be-
tween Alice and Bob.

As a comparison to previous security analysis, with the
source flaws δ=0.127, no matter how many decoy states we
choose or how large the data size we use, the key generation
rate will hit zero at only about 10 km based on GLLP [3]. In
other words, at 50 km, not even a single bit could be shared
between Alice and Bob with guaranteed security. This means
that the key generation might be actually insecure in previous
long-distance decoy-state experiments [7–11] if considering
source flaws. In contrast, our analysis can easily achieve high
secure key generation rate over long distances in the presence
of source flaws.

Simulation: We perform a simulation to numerically study
our security analysis in a practical setting. Fig. 2 shows the
simulation results, where similar to our experiment, we use
N=5 × 1010 and ϵ=10−10. For comparison, this figure also
includes the key rate for the decoy-state BB84 based on the
GLLP security analysis. The power of our security analysis is
explicitly shown by the fact that GLLP delivers a key rate that
decreases rapidly when δ increases. The maximal tolerant dis-
tance is about 9 km. This is because GLLP considers the worst
case scenario where losses can increase the source flaw [3].
Our security analysis, however, can substantially outperform
GLLP and it is loss-tolerant to source flaws. Our QKD set-
up can be made secure over 60 km and the secure key rate is
almost the same as the case without source flaws.

More details can be seen in the Supplementary Mate-
rial. Supplementary Material is unpublished results and
confidential.

[1] Gisin, N. et al. Rev. Mod. Phys. 74, 145–195 (2002).
[2] Scarani, V. et al. Rev. Mod. Phys. 81, 1301–1350 (2009).
[3] Gottesman, D., Lo H.-K., Lütkenhaus, N. & Preskill, J. Quant.

Inf. Comput. 4, 325 (2004).
[4] Hwang, W.-Y. Phys. Rev. Lett. 91, 057901 (2003).
[5] Lo, H.-K., Ma, X. & Chen, K. Phys. Rev. Lett. 94, 230504

(2005).
[6] Wang, X.-B. Phys. Rev. Lett. 94, 230503 (2005).
[7] D. Rosenberg, J. et al. Phys. Rev. Lett. 98, 010503 (2007).
[8] Schmitt-Manderbach, T. et al. Phys. Rev. Lett. 98, 010504

(2007).
[9] Dixon, A., Yuan, Z., Dynes, J., Sharpe, A., & Shields, A. Opt.

Exp. 16, 1879018979 (2008).
[10] Lucamarini, M. et al. Opt. Express 21, 2455024565 (2013).
[11] Nauerth, S., Moll, F., Rau, M., Fuchs, C., Horwath, J., Frick, S.

& Weinfurter H. Nat. Photon. 7, 382386 (2013).
[12] Lo, H.-K. Curty, M. & Qi, B. Phys. Rev. Lett. 108, 130503

(2012).
[13] Rubenok, A., Slater, J. A., Chan, P., Lucio-Martinez, I., & Tit-

tel, W. Phys. Rev. Lett. 111, 130501 (2013).
[14] Sun, S.-H., Jiang, M.-S. & Liang, L.-M. Phys. Rev. A 83,

062331 (2011).
[15] Berlı́n, G., Brassard, G., Bussiéres, F., Godbout, N., Slater, J.
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