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Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic
implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is
assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects
for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be
secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over
long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in
the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD
implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more
real-world problems than most previous experiments, and our theory can be applied to general discrete-variable
QKD systems. These features constitute a step towards secure QKD with imperfect devices.
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I. INTRODUCTION

Quantum key distribution (QKD), offering information-
theoretic security in communication, has aroused great interest
among both scientists and engineers [1]. The most important
question in QKD is its security. This fact has finally been
proven based on the laws of quantum mechanics [2,3].
However, for real-life implementations that are mainly based
on attenuated laser pulses, the occasional production of
multiphotons and channel loss make QKD vulnerable to
various subtle attacks [4]. Fortunately, the decoy-state method
[5] has solved this security issue and dramatically improved the
performance of QKD with faint lasers. Several experimental
groups have demonstrated that decoy-state BB84 is secure and
feasible under real-world conditions [6–12]. As a result, the
decoy-state method has become a standard technique in many
current QKD implementations [13].

Until now, however, decoy-state QKD experiments [6–13]
have had two important drawbacks. The first one is that in the
key rate formula of all existing experiments, it is commonly
assumed that the phase and polarization encoding is done
perfectly without errors. Thus the state preparation is assumed
to be basis independent. That is, the density matrices for the
two conjugate bases are assumed to be the same. This is a
highly unrealistic assumption and may mean that the key
generation is actually not proven to be secure in previous QKD
experiments [6–13].

What if we use a key rate formula that takes imper-
fect encodings into account? The standard Gottesman-Lo-
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Lütkenhaus-Preskill (GLLP) security proof [3] (see also [14])
does allow one to do so. Unfortunately, GLLP formalism is
very conservative in assuming that the dimensionality of the
prepared states is unbounded. Then the eavesdropper (Eve)
could perform an unambiguous-state-discrimination (USD)
attack [15]. Consequently, the secret key rate will be reduced
substantially (e.g., a commercial system is secure below 10-km
fiber only). We remark that source flaws are a serious concern,
not only in decoy-state BB84 but also in other quantum
information processing protocols [16,17].

To address the source flaw problem, Tamaki et al. put
forward a theoretical proposal—the loss-tolerant protocol
[18]—that outperforms GLLP analysis significantly. The loss-
tolerant protocol considers a realistic situation where the
dimension of the prepared states is bounded to two (which
we call a qubit assumption). Then it is impossible for Eve to
perform the USD attack. Eve’s information can be bounded
from the rejected-data analysis (i.e., using the basis-mismatch
events to bound the phase error rate) proposed in [19].
Nevertheless, Ref. [18] is only valid in the asymptotic limit
with unlimited resources. The practicality of the loss-tolerant
protocol remains unknown.

Recently, though an elegant proposal has implied that
Eve’s information can be bounded without monitoring signal
disturbance [20], source flaw was still not considered in the
theory and experiment [21]. Therefore, all previous QKD
experiments ignore the source flow problem, and all papers
addressing this problem are theoretical. For these reasons, until
now, the feasibility of long-distance QKD implementations
with imperfect encodings has remained undemonstrated.

The second drawback in previous experiments [6–13]
is that the finite-key security claims were made with the
assumption that Eve was restricted to particular types of attacks
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(e.g., collective attacks). Unfortunately, such assumptions
cannot be guaranteed in practice. Very recently, based on the
frameworks proposed in [22,23], Hayashi et al. and Lim et al.
independently provide, for the first time, tight and rigorous
security bounds against general quantum attacks (i.e., coherent
attacks) for decoy-state QKD [24,25]. Nonetheless, a QKD
experiment that implements such an advanced theory has yet
to be completed.

In this work, we present experimental realization of the
loss-tolerant protocol [18] and the finite-key analysis [24].
By modifying a commercial plug&play QKD system, we
experimentally show that with imperfect source encodings,
it is still able to perform secure QKD over long distances. In
particular, with our security analysis, we successfully generate
secure keys over different channel lengths, up to 50-km
telecom fibers. In contrast, not even a single bit of secure key
can be extracted with GLLP security proof. We note in passing
that our experiment requires only three encoding states. Thus it
can simplify conventional BB84 implementations.1 Moreover,
we study how to apply the finite-key analysis of [24,25] in
real implementations. We generate secure keys that can be
secure against coherent attacks in the universally composable
framework [26]. Our implementation, security analysis, and
parameter estimation procedure can be applied to general
discrete-variable QKD systems. Our results break ground for
future QKD experiments with imperfect sources.

The rest of this paper is organized as follows. We introduce
the protocol in Sec. II. In Sec. III, we present the security
analysis. In Sec. IV, we present the decoy-state analysis
for parameter estimation. In Sec. V, we verify the qubit
assumption. In Sec. VI, we present our experimental setup
and experimental results. Finally, we conclude this paper in
Sec. VII.

II. PROTOCOL

The loss-tolerant protocol is a general method that works
not only for the standard BB84 protocol, but even for the
three-state protocol [27] where there is a strong asymmetry
between the two bases. The three-state QKD runs almost the
same as BB84, except that (i) Alice sends Bob only three pure
states {|0z〉, |0x〉, |1z〉}, where |ij 〉 (i ∈ {0,1} and j ∈ {Z, X})
denotes the state associated with bit “i” in j basis, and (ii) the
rejected data (i.e., the detection events when Alice and Bob
use different basis) are used for the estimation of the phase
error rate [19].

Here we focus on the three-state protocol and consider an
asymmetric coding, where the secret key is extracted only from
the events whereby Alice and Bob both choose the Z basis. To
implement the loss-tolerant protocol, we extend it to a general
practical setting with finite keys and finite decoy states. The
concrete description of the different steps of our protocol is
presented below.

a. Transmission. Alice chooses a bit value uniformly at
random, selects a basis choice λ ∈ {Z,X} with probabilities

1For those free-space systems based on four laser diodes, one could
simply keep one laser just as backup in case a certain laser fails,
without any decrease in performance.

Pλ ∈ {Pz,Px}, and an intensity choice k ∈ {μ,ν,ω} ({signal,
decoy, vacuum}) with probabilities Pk ∈ {Pμ,Pν,Pω}. Finally,
she prepares a phase-randomized weak coherent pulse, chosen
from three states {|0z〉, |0x〉, |1z〉}, where |iλ〉 denotes the state
associated with bit “i” in λ basis, and sends it to Bob via the
quantum channel.

b. Detection. Bob chooses a basis from {Z,X} with proba-
bilities {Pz,Px} and measures the pulses. Then he records the
detection or nondetection, his basis choice, and the measured
bit value. (For double clicks, he assigns a random bit value.)

c. Basis reconciliation. Alice and Bob announce their
basis and intensity choices over an authenticated public
channel. Then they decide the number of the detected pulses
(gain counts) nλ,k , when both Alice and Bob use basis λ for
intensity k.

d. Parameter estimation. First, Alice and Bob announce
the bit information for all the pulses that are detected in X
by Bob. Second, they compute: (i) the number of error pulses
nex,k where both Alice and Bob use X and they obtain the
disagreement bit values; (ii) the number of basis-mismatch
pulses nix|jz,k where Bob detects the pulse in X and obtains the
bit value i, given that Alice prepares bit j in Z basis. Third,
according to the formulas shown in Table I, they calculate sL

x,0,
sL

x,1, and eU
x,1, which are the lower bound of vacuum events, the

lower bound of single-photon events, and the upper bound of
the phase error rate, associated with the single-photon events
in Z basis, respectively.

e. Error correction and verification. Alice and Bob reveal
leakEC = nz,μfeh(ez,μ) bit of information to perform an error
correction step that can correct errors for the expected quantum
bit error rate (QBER) ez. (fe is the error correction inefficiency
function that is chosen as 1.16 in this paper.) To ensure that
they share a pair of identical keys with εcor correct [23], they
perform an error-verification step using two universal hash
functions that publish �log2 1/εcor� bits of information [28].

f. Privacy amplification. Using the results from steps d and
e, Alice and Bob estimate the sacrificed bit length SPA [see
Eq. (1)] [24,25] and apply a universal hash function to their
corrected strings to produce the final secret key of length �

[see Eq. (2)].

III. SECURITY ANALYSIS

We first define the security criteria that we are using
[29]. For some small errors, εcor,εsec > 0, we say that our
protocol is εcor + εsec-secure if it is εcor-correct and εsec-
secret. The former is satisfied if the secret keys are identical
except with a small probability εcor. The latter is satisfied
if ‖ρAE − UA ⊗ ρE‖1/2 � εsec, where ρAE is the classical-
quantum state describing the joint state of SA and E, and UA is
the uniform mixture of all possible values of SA. Importantly,
this secrecy criterion guarantees that the protocol is universally
composable: the pair of secret keys can be safely used in any
cryptographic task [29].

The secrecy analysis is based on the framework of [23],
which was extended to the case with decoy states [24]. We
use the entropic uncertainty relations to establish bounds on
the smooth min-entropy of the raw key conditioned on Eve’s
information. Conditional on passing the checks in the error-
verification step, the sacrificed bit length SPA [25] in privacy
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TABLE I. Concrete descriptions and formulas for the parameter estimation.

Definitions:
λ: basis choice, λ ∈ {Z,X}.
k: intensity choice, k ∈ {μ,ν,ω} ({signal,decoy,vacuum}).
Pλ: probability choice for basis λ, Pλ ∈ {Pz,(1 − Pz)}.
Pk: probability choice for intensity k, Pk ∈ {Pμ,Pν,Pω}.
δl : phase modulation errors for l ∈ {1,2,3}, see Eq. (6).

Measured quantities:
nλ,k: the number of the detected pulses–both Alice and Bob use basis λ for intensity k.
nex,k: the number of error pulses–both Alice and Bob use X for intensity k and they obtain the disagreement bit values.
nix|jz,k: the number of basis-mismatch pulses–Bob detects the pulse in X and obtains the bit value i, given that Alice prepares bit j in Z for
intensity setting k (i,j ∈ {0,1}).

Statistical fluctuations:
	: statistics [31], 	(nz,ε1) = √

nz/2 ln(1/ε1).
nU

z,k: the upper bound of nz,k , nU
z,k = nz,k + 	(nz,k,ε1).

nL
z,k: the lower bound of nz,k , nL

z,k = nz,k − 	(nz,,ε1).
τn: n-photon-state probability, τn = ∑

k∈{μ,ν,ω} Pke
−kkn/n!.

Decoy-estimation results:
sL
z,0: the lower bound of vacuum events–Eq. (4).

sL
z,1: the lower bound of single-photon events–Eq. (5).

eU
x,1: the upper bound of the phase error rate–Eq. (7).

amplification (PA) is given by [24]

SPA = nz,μ − sL
z,0 − sL

z,1

[
q − h

(
eU
x,1

)] + 6 log2
26

εsec
, (1)

where h(x) is the binary entropy function, q is the maximum
fidelity for states prepared in the Z and X basis, which
characterizes the quality of the source [23], and εsec is the
secret level that can be guaranteed by PA (i.e., εsec-secret
[26]). {sL

z,0, sL
z,1, eU

x,1} can be calculated from the measured
quantities of {nz,k , nex,k , nix|jz,k}, and the concrete formulas
for such calculations are summarized in Sec. IV.

Finally, the εsec-secret key length in the Z basis is given by

� � sL
z,0 + sL

z,1

[
q − h

(
eU

x,1

)] − leakEC

− 6 log2
26

εsec
− log2

2

εcor
, (2)

with an overall security level εtot = εsec + εcor. Here, following
the analysis in Appendix B of [24], the secret level is given by

εsec = 2[α2 + α3] + ν + 21ε1. (3)

To get the secret level given in Eq. (2), we set each error term
to a common value ε; thus εsec = 26ε.

With �, the secret key rate (per optical pulse) is given by
RL = �/N with N denoting the total number of signals (optical
pulses) sent by Alice.

IV. PARAMETER ESTIMATION

Our decoy-state analysis for parameter estimation builds on
[24]. Our contribution is estimating the phase error rate eU

x,1

by incorporating source flaws. In decoy-state BB84, eU
x,1 is

estimated from the counts in X basis [24]. In the loss-tolerant
protocol [18], however, eU

x,1 is estimated from the rejected
counts, i.e., considering the detection events associated with
single photons when Alice and Bob use different bases.
Moveover, our estimation focuses directly on the detection

counts announced by Bob, which is different from previous
analysis that is based on detection probabilities [5,30]. The
results are summarized in Table I.

A. Lower bounds of vacuum counts and single-photon counts

In the original decoy-state method [5,30], Alice first
randomly chooses an intensity setting (signal state or decoy
state) to modulate each laser pulse and then she announces
her intensity choices after Bob’s detections. One can imagine
a virtual but equivalent protocol: Alice has the ability to first
send n-photon states and then she decides only on the choice
of intensity after Bob has a detection. Let sz,n be the number
of detection counts observed by Bob given that Alice sends
n-photon states in Z basis. Note that

∑∞
n=0 sz,n = nz is the

total number of detections (gain counts). In the asymptotic
limit with two decoy states, we have

n̂z,k =
∞∑

n=0

Pk|nsz,n, ∀k ∈ {μ,ν,ω},

where Pk|n is the conditional probability of choosing the
intensity k given that Alice prepares an n-photon state.
For finite-data size, from Hoeffding’s inequality [31], the
experimental measurement nz,k satisfies

|n̂z,k − nz,k| � 	(nz,ε1),

with probability at least 1 − 2ε1, where 	(nz,ε1) =√
nz/2 ln(1/ε1) and n̂z,k is the expected value of nz,k . Note

that our analysis considers the most general type of attack—a
joint attack—consistent with quantum memories. The above
equation allows us to establish a relation between the asymp-
totic values and the observed statistics. Specifically,

n̂z,k � nz,k + 	(nz,ε1) = nU
z,k,

n̂z,k � nz,k − 	(nz,ε1) = nL
z,k,
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are respectively the upper and lower bound of the gain counts
nz,k for a given intensity setting k ∈ {μ,ν,ω}.

An analytical lower bound on sz,0 can be established
by exploiting the structure of the conditional probabilities
Pk|n based on Bayes’ rule: Pk|n = Pk

τn

e−kkn

n! , where τn =∑
k∈{μ,ν,ω} Pke

−kkn/n! is the probability that Alice prepares
an n-photon state. Based on an estimation method in [30], we
have

sL
z,0 = τ0

(ν − ω)

(
νeωnL

z,ω

Pω

− ωeνnU
z,ν

Pν

)
, (4)

sL
z,1 = μτ1

μ(ν − ω) − (ν2 − ω2)

[
eνnU

z,ν

Pν

− eωnL
z,ω

Pω

+ ν2 − ω2

μ2

(
sL
z,0

τ0
− eμnU

z,μ

Pμ

)]
. (5)

B. Upper bound of phase error rate

In the asymptotic case, we follow [18] to estimate the phase
error rate. The details are shown in Appendix A. Here we
extend [18] to the finite-key case.

We focus on phase encoding BB84 and assume {δ1, δ2, δ3}
to be Alice’s phase modulation errors for {π/2, π , 3π/2}; thus

the four BB84 imperfect states sent by Alice are given by∣∣φ0z

〉 = |0z〉,∣∣φ1z

〉 = sin δ2|0z〉 + cos δ2|1z〉,∣∣φ0x

〉 = cos δ1|0x〉 + sin δ1|1x〉,∣∣φ1x

〉 = sin δ3|0x〉 + cos δ3|1x〉.

(6)

After considering the finite-data analysis, eU
x,1 is given by

eU
x,1 = s

vir,U
0x |1x ,1

+ s
vir,U
1x |0x ,1

s
vir,L
0x |0x ,1

+ s
vir,L
0x |1x ,1

+ s
vir,L
1x |0x ,1

+ s
vir,L
1x |1x ,1

. (7)

Here

[
Pzs

vir,U
0x |jx ,1

Pzs
vir,U
1x |jx ,1

]
= B × A−1

⎡
⎢⎢⎣

2Pxs
U
jx |0z,1

2Pxs
U
jx |1z,1

Pzs
U
jx |0x ,1

⎤
⎥⎥⎦, (8)

[
Pzs

vir,L
0x |jx ,1

Pzs
vir,L
1x |jx ,1

]
= B × A−1

⎡
⎢⎢⎣

2Pxs
L
jx |0z,1

2Pxs
L
jx |1z,1

Pzs
L
jx |0x ,1

⎤
⎥⎥⎦, (9)

where Pz and Px are the probabilities that Alice and Bob
choose the Z and X basis, j ∈ {0,1}, and A and B are given by

A =

⎡
⎢⎣

1 1 0

1 − cos(2δ2) sin(2δ2)

1 sin(2δ1) cos(2δ1)

⎤
⎥⎦, B = 1

12

[
(1+ sin δ2) sin δ2(1+ sin δ2) cos δ2(1+ sin δ2)

(1− sin δ2) − sin δ2(1 − sin δ2) − cos δ2(1− sin δ2)

]
. (10)

sU
jx |iz,1 (sL

jx |iz,1) denotes the upper (lower) bound of single-
photon events when Bob has detections associated with bit
“j” in the X basis, given that Alice sends a state of iz with
i ∈ {0,1}.

sL
jx |iz,1 and sL

jx |0x ,1
can be estimated equivalently by plugging

{nL
jx |iz,k , nU

jx |iz,k} and {nL
jx |0x ,k

, nU
jx |0x ,k

} into Eqs. (4) and (5).
sU
jx |iz,1 and sU

jx |0x ,1
can be estimated by

sU
jx |iz,1 = τ1

nU
jx |iz,ν − nL

jx |iz,ω
ν − ω

,

(11)

sU
jx |0x ,1 = τ1

nU
jx |0x ,ν

− nL
jx |0x ,ω

ν − ω
.

V. VERIFYING QUBIT ASSUMPTION

The qubit assumption is normally required in the security
proofs [1,2] to simplify the analysis. With the qubit assump-
tion, using large deviation techniques (e.g., quantum de Finetti
theorem), one can show that Eve can effectively apply only
the same superoperator on each transmitted qubit. This greatly
simplifies the security proofs. In practice, however, no previous
works have verified this assumption in practice. Note that a
specific attack to exploit the higher dimensionality of state
preparation has been proposed in [32]. Here we perform a com-
prehensive analysis to theoretically verify the qubit assumption
(with high accuracy) in a practical QKD system, even with
device imperfections. These results are shown in Appendix D.

VI. EXPERIMENT

We implement the protocol, presented in Sec. II, with a
modified commercial ID-500 plug&play QKD system, manu-
factured by ID Quantique (see Fig. 1) [33,34]. Nonetheless, we
remark that our methods of parameter optimizations, finite-key
analysis, the quantification of phase modulation errors, and the
implementation can also be applied to standard QKD systems.
Here, we use the plug&play QKD system simply as an example
to illustrate our general methods.

A. Setup

The initial plug&play system employs the phase-coding
QKD scheme and it works as follows (see Fig. 1) [34]. Bob
first sends two laser pulses (i.e., signal and reference pulse)
to Alice. Alice uses the reference pulse as a synchronization
signal (detected by her classical photodetector) to activate her
phase modulator (PM). Then Alice modulates the phase of the
signal pulse only, attenuates the two pulses to single-photon
level, and sends them back to Bob. Bob randomly chooses his
measurement basis by modulating the phase of the returning
reference pulse and detects the interference signals with his
two single-photon detectors (SPDs).

Our modifications on top of ID-500 are as follows. To
implement the decoy-state protocol, we add two acousto-
optic modulators (AOMs, Brimrose) to achieve polarization-
insensitive intensity modulation. AOM1—driven by a wave-
form with random pattern generated from a function generator
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BobSPD1

SPD2

Laser C
BS

PMB

PBS Channel

PMA
VOA

CD

FM
Alice

BS DL
AOM1AOM2

FG2 FG1

FG3

FIG. 1. (Color online) Experimental setup. SPD1/SPD2, single-photon detector; C, circulator; PMA/PMB , phase modulator; BS, beam
splitter; PBS, polarization beam splitter; CD, classical photodetector; VOA, variable optical attenuator; AOM1/AOM2, acousto-optic modulator;
FG, function generator; DL, delay line; FM, Faraday mirror. PMA randomly selects a phase from {0,π/2, π} for the three-state modulations.
AOM1 randomly modulates the intensity of each pulse to be either signal-state level or decoy-state level, while AOM2 compensates the phase
shift due to AOM1.

(FG1, Agilent 88250A)—is used for the decoy modulation,
while AOM2—driven by a fixed waveform generated from
FG2—is used to compensate the phase shift caused by the
frequency shift of the AOM [6]. To implement the three-state
protocol, we adopt another FG, i.e., FG3 in Fig. 1, to control
Alice’s PM. FG1 and FG3 are loaded with random numbers
generated from a quantum random number generator [35]. We
have measured the system parameters as shown in Table II.

B. Quantifying modulation error

We quantify the modulation error δθ in the source through
calibrating Alice’s PM, a LiNbO3 waveguide-based electro-
optical modulator, on two plug&play QKD systems—ID 500
and Clavis2 [34]. δθ is defined as the difference between the
actual phase and the expected phase θ ∈ {0, π/2, π 3π/2}.
We find that in ID-500, the voltages {0, 0.30Vm, 0.62Vm,
0.92Vm} modulate the expected phases {0, π/2, π , 3π/2},
where Vm ≈ 3.67 V is a maximal value allowed on Alice’s
PM. The calibration process is as follows. Alice is directly

connected to Bob with a short fiber (about 1 m), Alice scans
the voltages applied to her PM, Bob sets his own PM at a
fixed unmodulated phase {0}, and then records the detection
counts of his two SPDs. These counts are denoted by D1,θ and
D2,θ . The detection counts on ID-500 and Clavis2 are shown
in Table III.

In ID-500, to quantify δθ , we first determine the detector
efficiencies (ηd1, ηd2) and the dark count rates (Y0,d1, Y0,d2) for
Bob’s two SPDs and find that ηd1 = 5.05% and ηd2 = 4.99%
and Y0,d1 ≈ Y0,d2 = 4.01×10−5. In Table III, D1,0 quantifies
the amount of global misalignment between Alice and Bob
(i.e., the summation of the dark counts and the imperfect
visibility). This global misalignment can increase QBER, but
it is irrelevant to bound Eve’s information in the loss-tolerant
protocol [18]. Only the relative orientation between the three
states prepared by Alice quantifies the source flaws that can
be potentially exploited by Eve. Hence, we subtract D1,0 in
the quantification of δθ . In our analysis of the statistics, we
use Hoeffding’s inequality [31] to guarantee the definition of
composable security. The upper bound of δθ is then given by

δθ � δ̄θ =
∣∣∣∣∣θ − 2 arctan

(√
[(D1,θ + 	(D1,θ ,ε)] − [D1,0 − 	(D1,0,ε)]/ηd1

[(D2,θ − 	(D2,θ ,ε)] − [D1,0 + 	(D1,0,ε)]/ηd2

)∣∣∣∣∣, (12)

where 	(Di,θ ,ε)=√
Di,θ/2 ln(1/ε) (with i ∈ {0,1}) [31]. In

general, if Y0,d1 �= Y0,d2 in a practical system, in Eq. (12), we
can use Di,θ to subtract the dark counts of detector di . Here, we
choose a failure probability ε = 10−10 (i.e., a confidence level
1 − 2×10−10). The upper bounds of δθ are shown in Table III.
From this table, the error δ in ID-500 is upper bounded by the
case of δπ , i.e., δ � δ̄π = 0.134.

TABLE II. Parameters measured in an ID-500 commercial QKD
system, including laser wavelength λ, optical misalignment error ed

(the probability that a photon hits the erroneous detector), Bob’s
overall quantum efficiency ηBob, dark count rate per pulse Y0 for each
detector, and system repetition rate f .

λ ed ηBob Y0 f

1551.71 nm 2.35% 5.05% 4.01×10−5 5 MHz

Using the same method for Clavis2, we find that δ is
upper bounded by δ � δ̄π = 0.145. Notice that δ can also be

TABLE III. Raw counts and modulation errors for Alice’s phase
modulator in ID-500 and Clavis2 commercial plug&play systems.
D1,θ (D2,θ ) represents the detections counts of SPD1 (SPD2). δ̄θ ,
given by Eq. (12), is the upper bound of modulation error for a given
phase θ .

System θ D1,θ D2,θ δ̄θ

ID-500 0 630 867678 –
π/2 456735 444336 0.013
π 856245 4744 0.134

3π/2 464160 436962 0.030
Clavis2 0 727 1075320 –

π/2 546724 527735 0.023
π 1111574 6990 0.145

3π/2 566813 531417 0.037
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FIG. 2. (Color online) Practical key rates with parameters of
Table II, N = 5×1010 and εtot = 10−10. The main figure is for
our analysis, while the inset figure is for the decoy-state BB84 with
the GLLP security analysis. With GLLP, the maximal distance for
our ID-500 system is about 9 km (green dashed-dotted curve in the
inserted figure). In contrast, our analysis can substantially outperform
GLLP in that the ID-500 system can be made secure over 60 km and
the secure key rate is almost the same as the case without considering
source flaws (i.e., assuming δ = 0).

estimated using the interference visibility or the extinction
ratio of the PM [36]. In a system with an advanced phase-
stabilized interferometer [37], the value of δ � 0.062 corre-
sponds to about 99.9% visibility or a 30-dB extinction ratio.

C. Numerical evaluation

With δθ and the parameters in Table II, Fig. 2 shows
the simulation results, where we choose the total number of
pulses N = 5×1010 and the security level εtot = 10−10. We
use the model proposed in [30] to simulate the virtual data.
For comparison, this figure also includes the key rate for the
decoy-state BB84 based on the GLLP security analysis (see
Appendix B for the model). The power of our security analysis
is explicitly shown by the fact that GLLP delivers a key rate
that decreases rapidly when δ increases. The maximal tolerant
distance is about 9 km for our QKD system. Our security
analysis, however, can substantially outperform GLLP. Our
QKD setup can be made secure over 60 km, and the secure key
rate is almost the same as the case without source flaws. Using
simulation, we also determine the implementation parameters
to achieve the optimal system performance. The optimized
parameters are shown in Table IV.
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FIG. 3. (Color online) Experimental secret key rates (blue circle)
and QBERs (green dot) over fiber lengths of 5, 20, and 50 km.

D. Experimental results

In our demonstration, we implement the loss-tolerant
protocol in the finite-key regime over standard fiber lengths
(L) of 5, 20, and 50 km. In the 5- and 20-km experiments,
we performed a real decoy-state QKD implementation with
optimized parameters. We use FG1 to randomly modulate the
signal and decoy states and use FG3 to randomly modulate
the three states of {|0z〉, |0x〉, |1z〉}. In the 50-km experiment,
we removed the two AOMs due to their high loss (over
3 dB each) and used the variable optical attenuator (VOA) in
Alice to modulate the decoy intensities for a proof-of-concept
decoy-state modulation.

Our measurement and postprocessing are different from
previous experiments in that we directly measure the detection
counts instead of the so-called gains (i.e., probabilities) [6–12],
and we also record the basis-mismatch counts. In the 5-km
and 20-km experiments, we chose to operate the system for a
few hours and collected about 75 sets of data, with each set
of about 104.5 million pulses, which corresponds to a total
number of pulses N = 7.84×109. In the 50-km experiment,
we collected about 500 sets of data and sent a total number of
N = 5.23×1010 pulses. The details of the experimental counts
are shown in Appendix C.

In our analysis of experimental data, we consider a security
level εtot = 10−10. With δθ , we find that q = 0.79. By plugging
the experimental counts into the decoy-state estimations and
using Eq. (2), we obtain the experimental results listed in
Table IV and Fig. 3. The system’s QBER is below 3%. Based
on the loss-tolerant analysis, a secure key rate (per optical

TABLE IV. Implementation parameters and experimental results. N is the total number of pulses sent by Alice. Pμ, Pν are the probabilities
to choose different intensities. Pz is the probability to choose the Z basis. ω equals about 0.001 for 5- and 50-km experiments, and it equals
about 0.003 for 20-km experiment. The estimation results are obtained by plugging the experimental counts into the decoy-state estimation
equations (see Table I). The key rate is obtained from Eq. (2).

Channel Parameters Estimation Performance

L (km) Attn (dB) N μ ν Pμ Pν Pz sL
z,0 sL

z,1 eU
x,1 ez,μ l RL

5 1.4 7.84×109 0.41 0.05 0.64 0.27 0.70 7.40×104 3.02×107 6.28% 2.67% 1.06×107 1.40×10−3

20 4.5 7.84×109 0.37 0.06 0.40 0.50 0.60 6.15×104 6.58×106 8.67% 2.74% 8.07×105 1.03×10−4

50 10.5 5.23×1010 0.55 0.06 0.74 0.18 0.50 3.36×105 1.33×107 8.46% 2.98% 1.07×106 2.14×10−5
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pulse) of 1.40×10−3 was generated at 5 km, while at 50 km it
was 2.14×10−5. Given the 5-MHz repetition rate, the key rates
per second are 7 kbps and 107 bps, respectively. Over 1 kbit
of unconditionally secure keys are exchanged between Alice
and Bob. The security of these keys considers source flaws
and satisfies the composable security definition, and it can
withstand general attacks by Eve. With a state-of-the-art high-
speed QKD system working at a gigahertz repetition rate, our
loss-tolerant analysis can easily enable a key rate of megabits
per second.

As a comparison to previous security analysis (e.g., GLLP
[3]) with the source flaw δ = 0.134, no matter how many decoy
states we choose or how large the data size we use, the key
generation rate will hit zero at only about 10 km. That is, at
20 and 50 km, using previous GLLP security proof, not even
a single bit could be shared between Alice and Bob with guar-
anteed security. This means that if considering source flaws
in previous long-distance decoy-state experiments [6–13],
the key generation might not be proven to be secure. In contrast,
our analysis can easily achieve a high secure key generation
rate over long distances, even in the presence of source flaws.

VII. CONCLUSION

We have demonstrated decoy-state QKD with imperfect
state preparations and employed tight finite-key security

bounds with composable security against coherent attacks.
Our experiment demonstrates that the perfect state-preparation
assumption can be removed, and it is still able to perform
QKD over long distances. In our paper, we ignore certain
imperfections in the source such as the intensity fluctuations
of signal and decoy states, which have a small effect and can
be taken care of using previous results [25]. Moreover, it will
be interesting to consider the source flaw problem in the new
protocol of [20]. Future research can also combine our results
with measurement-device-independent QKD [16] to remove
the security loopholes, both in the source and in the detectors.

Note added in proof. Recently, we noticed a paper which
addresses the finite-key effect of the loss-tolerant protocol [38].
In contrast to our present manuscript, that paper is strictly
theoretical.
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APPENDIX A: PHASE ERROR RATE IN THE ASYMPTOTIC CASE

We follow [18] to estimate the phase error rate. To make our paper self-contained, we present the main results from [18] in
this section. For simplicity, we consider three pure states, described in Eq. (6). The density matrices for the three states |φ0z

〉,
|φ1z

〉, |φ0x
〉 are as follows:

ρ0z
= ∣∣φ0z

〉〈
φ0z

∣∣ = (I + σz)/2, (A1)

ρ1z
= ∣∣φ1z

〉〈
φ1z

∣∣ =
[

sin2 δ2 sin δ2 cos δ2

sin δ2 cos δ2 cos2 δ2

]
= 1

2
I − 1

2
cos(2δ2)σz + 1

2
sin(2δ2)σx, (A2)

ρ0x
= ∣∣φ0x

〉〈
φ0x

∣∣ = 1

2

[
1 + sin(2δ1) cos(2δ1)

cos(2δ1) 1 − sin(2δ1)

]
= 1

2
I + 1

2
sin(2δ1)σz + 1

2
cos(2δ1)σx. (A3)

Here σx,y,z denote Pauli matrices and I is the identity matrix. The equivalent entanglement states between Alice and Bob are [18]

|�z〉 = (|0z〉
∣∣φ0z

〉 + |1z〉
∣∣φ1z

〉)/√
2 |�x〉 = |0x〉

∣∣φ0x

〉
. (A4)

Let Yω
sβ ,jα

with ω ∈ {Z,X} and s,j ∈ {0,1} denote the joint probability that Alice (Bob) obtains a bit value j (s) conditional on
the state preparation of |�ω〉 and her (his) basis choice α (β); then the joint probabilities for different states are [18]

Y z
sx,0z

= 2
6 Tr

[
Dsxσ

z
B,0z

] = 1
6 Tr

[
Dsxρ0z

] = (qsx |I + qsx |z)/6, (A5)

where σ z
B,0z

= TrA[|0z〉〈0z| ⊗ I |�z〉〈�z|] = 1
2 |φ0z

〉〈φ0z
|, and qsx |(I,x,z) = Tr[Dsx

σI,x,z]/2;

Y z
sx,1z

= 2
6 Tr

[
Dsxσ

z
B,1z

] = 1
6 Tr[Dsxρ1z

] = [qsx |I − cos(2δ2)qsx |z + sin(2δ2)qsx |x]/6, (A6)

where σ z
B,1z

= TrA[|1z〉〈1z| ⊗ I |�z〉〈�z|] = 1
2 |φ1z

〉〈φ1z
|;

Y x
sx,0x

= 1
6 Tr

[
Dsxσ

x
B,0x

] = 1
6 Tr

[
Dsxρ0x

] = [
qsx |I + sin(2δ1)qsx |z + cos(2δ1)qsx |x

]/
6, (A7)

where σx
B,0x

= TrA[|0x〉〈0x | ⊗ I |�x〉〈�x |] = 1
2 |φ0x

〉〈φ0x
|.
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Equations (A5)–(A7) can be rewritten as⎡
⎢⎣

Y z
sx ,0z

Y z
sx ,1z

Y x
sx ,0x

⎤
⎥⎦ = 1

6

⎡
⎢⎣

Y z
sx |0z

Y z
sx |1z

Y x
sx |0x

⎤
⎥⎦ = 1

6

⎡
⎢⎣

1 1 0

1 − cos(2δ2) sin(2δ2)

1 sin(2δ1) cos(2δ1)

⎤
⎥⎦

⎡
⎢⎣

qsx |I
qsx |z
qsx |x

⎤
⎥⎦ ≡ 1

6
A

⎡
⎢⎣

qsx |I
qsx |z
qsx |x

⎤
⎥⎦. (A8)

Here Y z
sx |0z

denotes the conditional probability that Bob obtains bit s in basis x given that Alice sends 0z. The same definition is
applied to Y z

sx |1z
and Y x

sx |0x
. Note that all these quantities can be measured directly in experiment.

To estimate the phase error rate, we consider a virtual protocol: Alice first prepares |�z〉 and then both Alice and Bob measure
systems A and B in the X basis [18]. The joint probabilities of the virtual states Y

z,vir
sx ,jx

are

Y
z,vir
sx ,0x

= 1
12 Tr

[
Dsx

σ
z,vir
B,0x

] = 1
3

[
(1 + sin δ2)qsx |I + sin δ2(1 + sin δ2)qsx |x + cos δ2(1 + sin δ2)qsx |x

]
,

Y
z,vir
sx ,1x

= 1
12 Tr

[
Dsx

σ
z,vir
B,1x

] = 1
3

[
(1 − sin δ2)qsx |I − sin δ2(1 − sin δ2)qsx |x − cos δ2(1 − sin δ2)qsx |x

]
.

(A9)

Equation (A9) can then be rewritten as[
Y

z,vir
sx ,0x

Y
z,vir
sx ,1x

]
= 1

12

[
(1 + sin δ2) sin δ2(1 + sin δ2) cos δ2(1 + sin δ2)

(1 − sin δ2) − sin δ2(1 − sin δ2) − cos δ2(1 − sin δ2)

]⎡
⎣qsx |I

qsx |z
qsx |x

⎤
⎦ ≡ B

⎡
⎣qsx |I

qsx |z
qsx |x

⎤
⎦. (A10)

Combining it with Eq. (A8), we can obtain the rate of virtual states based on experimental results, which is

[
Y

z,vir
sx ,0x

Y
z,vir
sx ,1x

]
= B × A−1

⎡
⎢⎣

Y z
sx |0z

Y z
sx |1z

Y x
sx |0x

⎤
⎥⎦. (A11)

Finally, the phase error can be estimated by

ex = Y
z,vir
1x ,0x

+ Y
z,vir
0x ,1x

Y
z,vir
0x ,0x

+ Y
z,vir
1x ,0x

+ Y
z,vir
0x ,1x

+ Y
z,vir
1x ,1x

. (A12)

The extended result of Eq. (A12) for the finite-data case is presented in Eq. (4) of the main text.

APPENDIX B: GLLP SECURITY ANALYSIS
WITH SOURCE FLAWS

We discuss the standard GLLP security analysis for BB84
with source flaws [3,36], which is used for our simulation of
Fig. 2.

Based on GLLP for imperfect sources, the εsec secret key
length is similar to the key formula [i.e., Eq. (1)] in the
main text, except for the phase error rate, which includes the
correction due to basis-dependent flaws and is revised to [3]

ēU
x,1 � eU

x,1 + 4	′ + 4
√

	′eU
x,1 + εph. (B1)

Here, 	′ is called the balance of a quantum coin [3,36]
and quantifies the basis-dependent flaws of Alice’s signals
associated with single-photon events. 	′ is given by [3]

	′ � 	

Y1
, 	 = 1 − F (ρz,ρx)

2
, (B2)

where Y1 (typically called the yield of single photons [5,30]) is
the frequency of successful detections associated with single
photons, and F (ρz,ρx) is the fidelity of the density matrices
for the Z and X basis. Using Eq. (6), we can easily calculate
F (ρz,ρx) given {δ1, δ2, δ3}. In our QKD system, with {δ1, δ2, δ3}
upper bounded by 0.127, we have F (ρz,ρx) = 1−1.9×10−3.
So, from Eq. (B2), 	 = 9.45×10−4.

In GLLP analysis, the imperfect fidelity F (ρz,ρx) can be
enhanced in principle by Eve via exploiting the channel loss,
which is clearly shown in Eq. (B2), i.e., 	 is enhanced to 	′.

Combined with the decoy-state estimations discussed in [24],
we can derive the key length and obtain the inset curves in
Fig. 2.

APPENDIX C: EXPERIMENTAL COUNTS

In Table V we list the raw experimental counts for each
distance. Note that, in the experiment results,

n1x |0x ,k = nex,k, n0x |0x ,k = nx,k − nex,k.

In the 5- and 20-km experiments, we collected about 75 sets
of data, with each set of about 104.5 million pulses sent out
by Alice. This corresponds to a total number of pulses N =
7.84×109. In the 50-km experiment, we collected about 500
sets of data and sent a total number of N = 5.23×1010 pulses.
The experimental gain counts (nz,k , nx,k), error counts (nez,k ,
nex,k), and rejected counts (n0x |z,k , n1x |z,k) are listed in the table.

APPENDIX D: QUBIT ASSUMPTION
AND ITS VERIFICATION

We verify the qubit assumption, i.e., that the four
BB84 states remain in two dimensions. This assumption
is commonly made in various QKD protocols including
decoy-state BB84 and MDI-QKD. We focus on a standard
one-way phase-encoding system, which has been widely
implemented in experiments [7,10–12]. In this system, a
LiNbO3 waveguide-based phase modulator (PM) is commonly
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TABLE V. Experimental raw counts.

Distance nz,μ nz,ν nz,ω nx,μ nx,ν nx,ω

5 km 7.84×107 2.23×106 2.60×104 7.17×106 4.08×105 4.70×103

20 km 8.09×106 1.50×106 2.71×104 3.40×106 6.31×105 1.36×104

50 km 2.01×107 6.94×105 4.81×104 2.06×106 7.10×105 4.82×104

nez,μ
nez,ν

nez,ω
nex,μ

nex,ν
nex,ω

5 km 1.01×106 6.40×104 6.80×103 1.32×105 1.25×104 1.76×103

20 km 2.22×105 6.13×104 6.78×103 5.67×104 2.68×104 2.65×103

50 km 5.98×105 8.46×104 2.28×104 6.40×105 8.89×104 2.23×104

n0x |0z,μ n0x |0z,ν n0x |0z,ω n1x |0z,μ n1x |0z,ν n1x |0z,ω

5 km 3.83×106 2.47×105 3.30×103 4.16×106 2.32×105 2.40×103

20 km 1.36×106 2.39×105 4.56×103 1.34×106 2.2×105 4.59×103

50 km 0.57×107 1.63×105 1.10×104 0.56×107 1.76×105 1.26×104

n0x |1z,μ n0x |1z,ν n0x |1z,ω n1x |1z,μ n1x |1z,ν n1x |1z,ω

5 km 3.83×106 2.46×105 3.31×103 4.15×106 2.32×105 2.41×103

20 km 1.37×106 2.38×105 4.57×103 1.34×106 2.21×105 4.60×103

50 km 0.58×107 1.62×105 1.11×104 0.56×107 1.77×105 1.25×104

used to encode/decode phase information. Figure 4 illustrates
the schematic of such a PM [39]. For commercial products,
see [40]. To guarantee the qubit assumption, Alice’s PM
is supposed to have the same timing, spectral, spatial, and
polarization mode information for different BB84 states.
We find that timing and spatial information can be easily
guaranteed without any additional devices, while spectral
and polarization information can also be guaranteed with
standard low-cost optical devices such as a wavelength filter
and polarizer. Therefore, based on standard devices, we can
verify the qubit assumption with high accuracy. We remark
that our method serves as a specific example to practically
verify the qubit assumption. In the future, it will be interesting
to work toward constructing a more general theory on the
verification of the qubit assumption.

In the following, we discuss timing, spectral, spatial, and
polarization properties for different encoding phases.

1. Temporal-spectral mode

Temporal mode. Figure 4 shows the schematic of the phase
modulation based on LiNbO3 crystal. When the PM modulates
different phases, the electro-optical effect inside the LiNbO3

 

V 

X

Z

y

FIG. 4. Schematic of an electro-optic phase modulator based on
LiNbO3 crystal [39]. Commercial products can be seen in [40]. The
double-headed arrows show the direction of polarization of the optical
beam. The crystal is cut in a configuration so that the applied electrical
field (voltage) is along the direction of the principal (z) axis. To take
the advantage of the largest electro-optical coefficient in the z axis,
an optical beam is propagating along the x axis, with the direction of
polarization parallel to the z axis.

waveguide changes the principal refractive index nz. At first
sight, it might appear that the timing information is indeed
changed for different phase modulations. However, we show
that such a change is so small that it can be neglected.

According to the EM theory in LiNbO3 waveguides, the
relations among the principal refractive index nz, the group
refractive index ng , and the extraordinary refractive index ne

are given by [39]

ng = nz + ω0
dnz(ω)

dω

∣∣∣∣
ω0

, nz = ne − 1

2
n3

erz

V

d
, (D1)

where ω0 is the central frequency of the optical field, rz is the
electro-optical coefficient along the z axis, V is the voltage
applied onto the crystal, and d is the thickness of the crystal.
Thus the timing difference 	t between {0} and the phase
modulation {π} is given by

	t =
[

1

2
n3

erz

Vπ

d
+ 3

2
n2

erz

Vπ

d
ω0

dne(ω)

dω

∣∣∣∣
ω0

]
l0

c
, (D2)

where Vπ = χ0d

n2
e rzl0

is the half-wave voltage that provides a
phase modulation {π} [39], l0 is the length of the crystal, and
c is the speed of light.

For a typical LiNbO3 crystal working in the telecom
wavelength χ0 ∼ 1550 nm, it is well known that the relation
between ne and λ0 is given by [41]

n2
e = 1 + 2.980λ2

0

λ2
0 − 0.020

+ 0.598λ2
0

λ2
0 − 0.067

+ 8.954λ2
0

λ2
0 − 416.08

. (D3)

Notice that in a waveguide-based PM, one has to use the
effective index, i.e., neff , to include the waveguide effect.
We remark, however, that for LiNbO3 material, neff and ne

are almost the same [42]. Hence, by plugging Eq. (D3) into
Eq. (D2), we have 	t ≈ 4×10−6 ns. In a QKD implementa-
tion, the optical pulse is typically around 1-ns width [7–9] or
0.1 ns [10–12], and thus 	t � 0.1 ns. Assuming that the
optical pulse is Gaussian, 	t corresponds to a fidelity of
F (ρ0,ρπ ) ≈ 1–10−8 between {0} and {π}. Therefore, timing
remains (almost) the same for different phase modulations.
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Spectral mode. First, in a standard one-way system, Alice
can locally synchronize the devices so that the optical pulse
passes through Alice’s PM in the middle of the electrical
modulation signal (flat response). Hence the optical pulse
experiences a correct modulation without spectral change
[43,44]. In a two-way system, Alice can monitor the timing in-
formation between the signal and reference pulse to guarantee
the correct modulation and defend against side-channel attacks
[43,44]. Second, to guarantee a single spectral mode from the
output of a laser, one can use a standard wavelength filter.
For instance, a recent QKD experiment used an off-the-shelf
wavelength filter with a FWHM of 	ν = 15 GHz for a
different purpose [12]. In this case, given a Gaussian pulse
with FWHM 	t = 0.1 ns in the time domain [12], it is quite
close to the lower bound of time-bandwidth product [39], i.e.,
	t×	ν � 2ln2

π
. Wavelength filters with narrow bandwidth

have already been widely available on the market [45]. Hence
a single spectral mode can be guaranteed with high accuracy
by using a wavelength filter.

2. Spatial mode

For a standard single-mode fiber (SMF), the core diameter
is around 10 μm. Theory and experiments have already
confirmed that a SMF in the telecom wavelength rejects
all high-order modes and conducts only one fundamental
transverse mode [46]. The cutoff wavelength of a standard
SMF is about 1260 nm.2 Using the software of BeamPROP, we
have also performed a numerical simulation with a standard
multimode fiber propagating into a SMF. The results show
that after only about 1 mm, SMF rejects almost all high-order
modes. The high-order modes decay exponentially; thus after
about 10 mm, there is no high-order component left (less
than 10−10 proportion). Notice that the input of a standard
commercial PM usually has a certain length of pigtail fiber
(about 1 m) [40]. Therefore the single-mode assumption on
spatial mode can be easily guaranteed in practice.

3. Polarization mode

The input of a commercial PM is normally a pigtail of
polarization-maintaining fiber [40], which can ensure that the
input polarization is perfectly aligned with the principal axis
of PM. Experimentally, before this polarization-maintaining
fiber, one can use a fiber polarization beam splitter (PBS) to

2See, for instance, Corning’s SMF28; http://www.corning.com/
docs/opticalfiber.

reject other polarization modes. A standard PBS has about a
30-dB extinction ratio. In the following, we discuss the error
due to this finite extinction ratio (30 dB). Ideally, if the PBS has
an infinite extinction ratio, the input state is perfectly aligned
with the principal axis (z axis in Fig. 4) and Alice modulates
the four BB84 states as

|φj 〉 = 1√
2

(eij π
2 |Sz〉 + |Rz〉),

where j ∈ {0,1,2,3} denotes the four BB84 states and |Sz〉
(|Rz〉) denotes the signal (reference) pulse with polarization
along the z axis. However, due to the finite extinction ratio of
PBS, the signal and reference pulse are expressed as

|S〉 = α|Sy〉 + β|Sz〉, |R〉 = α|Ry〉 + β|Rz〉,

where |Sy〉 denotes the polarization component along the y

axis. For a 30-dB extinction ratio, α2 ≈ 0.001. Thus Alice’s
imperfect modulations can be described by

|φ′
j 〉 = 1√

2
(αeij π

6 |Sy〉 + βeij π
2 |Sz〉 + α|Ry〉 + β|Rz〉), (D4)

where we assume that the relative modulation magnitude
ratio between the polarization aligned with the principal axis
(z axis) and the orthogonal polarization (y axis in Fig. 4) is
1:3 [39,43]. Using three new bases {|e1〉, |e2〉, |e3〉}, Eq. (D4)
can be written as (similar to [32])

|φ′
j 〉 = 1√

2

[
αβ

(
eij π

6 − eij π
2
)|e1〉

+(
α2eij π

6 + β2eij π
2
)|e2〉 + |e3〉

]
. (D5)

Hence the four imperfect states are spanned to three di-
mensions in Hilbert space, i.e., the information encoded by
Alice is not only in the time-phase mode but also in the
polarization mode. However, for a 30-dB extinction ratio, we
find that it is almost impossible for Eve to attack the system,
because the fidelity between |φj 〉 and |φ′

j 〉, F (ρ|φj 〉,ρ|φ′
j 〉) =

tr (
√√

ρ|φj 〉ρ|φ′
j 〉
√

ρ|φj 〉), is about 1 − 10−7 for j ∈ {0,1,2,3}.
This shows that the imperfect states are highly close to the
perfect BB84 states. Most importantly, one can derive a refined
security proof to include this small imperfection into the
secure key rate formula, which will be a subject of future
investigation.
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Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields,
Opt. Express 21, 24550 (2013).

[12] K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe,
Z. L. Yuan, R. V. Penty, and A. J. Shields, Appl. Phys. Lett. 104,
051123 (2014).

[13] S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and
H. Weinfurter, Nat. Photon. 7, 382 (2013); J.-Y. Wang et al.,
ibid. 7, 387 (2013); B. Frohlich et al., Nature (London) 501, 69
(2013); A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez,
and W. Tittel, Phys. Rev. Lett. 111, 130501 (2013); Y. Liu et al.,
ibid. 111, 130502 (2013); T. Ferreira da Silva, D. Vitoreti, G. B.
Xavier, G. C. doAmaral, G. P. Temporao, and J. P. von der Weid,
Phys. Rev. A 88, 052303 (2013); Z. Tang, Z. Liao, F. Xu, B. Qi,
L. Qian, and H. K. Lo, Phys. Rev. Lett. 112, 190503 (2014);
Y. L. Tang et al., ibid. 113, 190501 (2014).

[14] Ø. Marøy, L. Lydersen, and J. Skaar, Phys. Rev. A 82, 032337
(2010); E. Woodhead and S. Pironio, ibid. 87, 032315 (2013).
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