Loopholes in implementations

Vadim Makarov

With equipment imperfections:

R = f(QBER, additional security parameters)

Security is based on the laws of physics and model of equipment

Stages of secure technology

1. Idea / theory / proof-of-the-principle

2. Initial implementations

- **3. Weeding out implementation loopholes** (spectacular failures patching)
- 4. Good for wide use

True randomness?

True randomness?

Issue reported patched, as of January 2010

Do we trust the manufacturer?

Many components in QKD system can be Trojan-horsed:

- access to secret information
- electrical power
- way to communicate outside or compromise security

ID Quantique Clavis2 QKD system

Double clicks

– occur naturally because of detector dark counts, multi-photon pulses... Discard them?

Intercept-resend attack... with a twist:

Proper treatment for double clicks: assign a random bit value.

N. Lütkenhaus, Phys. Rev. A **59**, 3301 (1999) T. Tsurumaru & K. Tamaki, Phys. Rev. A **78**, 032302 (2008)

Trojan-horse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Trojan-horse attack experiment

Artem Vakhitov tunes up Eve's setup

Trojan-horse attack for plug-and-play system

Eve gets back one photon \rightarrow in principle, extracts 100% information

N. Gisin et al., Phys. Rev. A 73, 022320 (2006)

Countermeasures?

D. Stucki et al., New J. Phys. 4, 41 (2002)

Countermeasures for plug-and-play system

Bob: NONE

(one consequence: SARG protocol may be insecure)

Attack	Target component	Tested system	Demonstrated eavesdr. (% key)?	Keeps full key rate?
Time-shift Y. Zhao <i>et al.,</i> Phys. Rev. A 78 ,	detector 042333 (2008)	ID Quantique	no (fraction)	no
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Pl	phase modulator hys. 12 , 113026 (20 ⁻	ID Quantique	no (full infth.)	yes (@ transm.≪1)
Faraday-mirror SH. Sun, MS. Jiang, LM. Lia	Faraday mirror ang, Phys. Rev. A 83	(theory) 3 , 062331 (2011)	(full infth.)	yes (@ transm.≪1)
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 1	detector 07 , 110501 (2011)	ID Quantique	no (full infth.)	yes
Detector control L. Lydersen <i>et al.,</i> Nat. Photonic	detector cs 4 , 686 (2010)	ID Quantique, MagiQ Tech.	<mark>no</mark> (100%)	yes
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun	detector . 2 , 349 (2011)	research syst.	yes (100%)	yes
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13	detector 8, 073024 (2011)	research syst.	yes (98.8%)	no, 1/4

Attack	Target component	Tested system	Demonstrateci eavesdr. (% key)?	
Time-shift Y. Zhao <i>et al.,</i> Phys. Rev. A 78 , (detector 042333 (2008)	ID Quantique		
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Pt	phase modulator 1ys. 12 , 113026 (201	ID Quantique	no (fulinfth.)	yeæ@ trans(v≪1)
Faraday-mirror SH. Sun, MS. Jiang, LM. Lia	Faraday mirror ang, Phys. Rev. A 83	(theory) , 062331 (2011)		ye∳Q) transm.≪1)
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 1 0	detector 07, 110501 (2011)	ID Quantique		
Detector control L. Lydersen <i>et al.,</i> Nat. Photonic	detector cs 4 , 686 (2010)	ID Quantique, MagiQ Tech.	no (199%)	yes
Detector control	detector 2 , 349 (2011)	research syst.	yes (100%)	
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13	detector , 073024 (2011)	research syst.	yes (08.8%)	

Attack	Target component	Tested system	Demonstrated eavesdr. (% key)?	Keeps full key rate?
Time-shift Y. Zhao <i>et al.,</i> Phys. Rev. A 78 ,	detector 042333 (2008)	ID Quantique	no (fraction)	no
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Pl	phase modulator hys. 12 , 113026 (201	ID Quantique	no (full infth.)	yes (@ transm.≪1)
Faraday-mirror SH. Sun, MS. Jiang, LM. Li	Faraday mirror ang, Phys. Rev. A 83	(theory) 3, 062331 (2011)	(full infth.)	yes (@ transm.≪1)
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 1	detector 07, 110501 (2011)	ID Quantique	no (full infth.)	yes
Detector control L. Lydersen <i>et al.,</i> Nat. Photonic	detector cs 4 , 686 (2010)	ID Quantique, MagiQ Tech.	<mark>no</mark> (100%)	yes
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun	detector . 2 , 349 (2011)	research syst.	yes (100%)	yes
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13	detector 3, 073024 (2011)	research syst.	yes (98.8%)	no, 1/4

How avalanche photodiodes (APDs) work

Faked-state attack in APD linear mode

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Launching bright pulse after the gate...

Full detector control

ID Quantique Clavis2

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Photo ©2010 Vadim Makarov

Lars Lydersen testing MagiQ Technologies QPN 5505

Proposed full eavesdropper

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4-5, 2009

Eve does not affect QKD performance

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Nat. Commun. 2, 349 (2011)

Detector deadtime attack

H. Weier *et al.,* "Quantum eavesdropping without interception: An attack exploiting the dead time of single photon detectors," New J. Phys. **13**, 073024 (2011)

Eavesdropping < 100% key

H. Weier *et al.,* "Quantum eavesdropping without interception: An attack exploiting the dead time of single photon detectors," New J. Phys. **13**, 073024 (2011)

Detector control demo. Now I am blind, now I click...

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| \le 2\sqrt{2}$

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011)

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| < 2\sqrt{2}$

Passive basis choice: $|S| \le 4$, click probability = 100%Active basis choice: $|S| \le 4$, click probability = 50%

I. Gerhardt, Q. Liu *et al.*, Phys. Rev. Lett. **107**, 170404 (2011)

Controlling superconducting nanowire single-photon detectors

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, V. Makarov, New J. Phys. 13, 113042 (2011)

2009

2010

Responsible disclosure is important

Example: hacking commercial systems

ID Quantique got a detailed vulnerability report – reaction: requested time, developed a patch

MagiQ Technologies got a detailed vulnerability report – reaction: informed us that QPN 5505 is discontinued

Results presented orally at a scientific conference

Public disclosure in a journal paper

L. Lydersen et al., Nat. Photonics 4, 686 (2010)

Can we eavesdrop on commercial systems?

ID Quantique's Cerberis: Dual key agreement

Õ

Countermeasures

Kill the hacker

Illegal

Does not solve the problem

Countermeasures

"Quick and intuitive" patches

"Deterministic detection or exclusion (of attack)"

Z. L. Yuan, J. F. Dynes, A. J. Shields, Appl. Phys. Lett. **99**, 196102 (2011).

- Lead away from provable security model of QKD
- Can often be defeated by hacking advances

L. Lydersen, V. Makarov, J. Skaar, Appl. Phys. Lett. **99**, 196101 (2011)

L. Lydersen *et al.,* Phys. Rev. A **84**, 032320 (2011)

Integrate imperfection into security proof

 May require deep modification of protocol, hardware, and security proof

Ø. Marøy *et al.,* Phys. Rev. A **82**, 032337 (2010) L. Lydersen *et al.,* Phys. Rev. A **83**, 032306 (2011)

H.-K. Lo, M. Curty, B. Qi, arXiv:1109.1473 S. L. Braunstein, S. Pirandola, arXiv:1109.2330

