Loopholes in implementations

Vadim Makarov

Stages of secure technology

1. Idea / theory / proof-of-the-principle

2. Initial implementations

- **3. Weeding out implementation loopholes** (spectacular failures patching)
- 4. Good for wide use

Quantum hacking

True randomness?

True randomness?

Issue reported patched, as of January 2010

Do we trust the manufacturer?

Many components in QKD system can be Trojan-horsed:

- access to secret information
- electrical power
- way to communicate outside or compromise security

ID Quantique Clavis2 QKD system

Double clicks

– occur naturally because of detector dark counts, multi-photon pulses... Discard them?

Intercept-resend attack... with a twist:

Proper treatment for double clicks: assign a random bit value.

N. Lütkenhaus, Phys. Rev. A **59**, 3301 (1999) T. Tsurumaru & K. Tamaki, Phys. Rev. A **78**, 032302 (2008)

Trojan-horse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Trojan-horse attack experiment

Artem Vakhitov tunes up Eve's setup

Trojan-horse attack for plug-and-play system

Eve gets back one photon \rightarrow in principle, extracts 100% information

N. Gisin et al., Phys. Rev. A 73, 022320 (2006)

Countermeasures?

D. Stucki et al., New J. Phys. 4, 41 (2002)

Countermeasures for plug-and-play system

Bob: none

(one consequence: SARG protocol may be insecure)

Attack	Target component	Tested system	Demonstrated eavesdr. (% key)?	Keeps full key rate?
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Ph	phase modulator nys. 12 , 113026 (201	ID Quantique	no (full infth.)	yes (@ transm.≪1)
Faraday-mirror SH. Sun, MS. Jiang, LM. Lia	Faraday mirror ang, Phys. Rev. A 83	(theory) 8, 062331 (2011)	(full infth.)	yes (@ transm.≪1)
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 1	detector 07, 110501 (2011)	ID Quantique	no (full infth.)	yes
Detector control L. Lydersen <i>et al.,</i> Nat. Photonic	detector cs 4 , 686 (2010)	ID Quantique, MagiQ Tech.	<mark>no</mark> (100%)	yes
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun	detector . 2 , 349 (2011)	research syst.	yes (100%)	yes
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13	detector , 073024 (2011)	research syst.	yes (98.8%)	no, 1/4
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84,	beamsplitter 062308 (2011)	research syst.	yes (<~100%)	yes

Attack	Target component	Tested system	Demonstrated eavesdr. (% key)?	Keens tull key rato?
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Ph	phase modulator hys. 12 , 113026 (201	ID Quantique	no (full infth.)	transtr. «1)
Faraday-mirror SH. Sun, MS. Jiang, LM. Lia	Faraday mirror ang, Phys. Rev. A 83	(theory) 3, 062331 (2011)		yer(62) trans(5)<(1)
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 1	detector 07, 110501 (2011)	ID Quantique	no (fungeth.)	
Detector control L. Lydersen <i>et al.,</i> Nat. Photonic	detector cs 4 , 686 (2010)	ID Quantique, MagiQ Tech.		
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun	detector . 2 , 349 (2011)	research syst.	yes (20%)	
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13	detector , 073024 (2011)	research syst.	yes (98.8%)	nors4
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84,	beamsplitter	research syst.	yes (<_100%)	V

Attack	Target component	Tested system	Demonstrated eavesdr. (% key)?	Keeps full key rate?
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Ph	phase modulator ays. 12 , 113026 (201	ID Quantique	no (full infth.)	<mark>yes (@</mark> transm.≪1)
Faraday-mirror SH. Sun, MS. Jiang, LM. Lia	Faraday mirror Ing, Phys. Rev. A 83	(theory) , 062331 (2011)	(full infth.)	yes (@ transm.≪1)
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 10	detector 7, 110501 (2011)	ID Quantique	no (full infth.)	yes
Detector control L. Lydersen <i>et al.,</i> Nat. Photonic	detector s 4 , 686 (2010)	ID Quantique, MagiQ Tech.	<mark>no</mark> (100%)	yes
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun.	detector 2 , 349 (2011)	research syst.	yes (100%)	yes
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 ,	detector 073024 (2011)	research syst.	yes (98.8%)	no, 1/4
Multi-wavelength HW. Li et al., Phys. Rev. A 84, (beamsplitter 062308 (2011)	research syst.	yes (<~100%)	yes

Attack example: avalanche photodetectors (APDs)

voltage V_{br}

Faked-state attack in APD linear mode

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Blinding APD with bright light

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Photo ©2010 Vadim Makarov

Lars Lydersen testing MagiQ Technologies QPN 5505

Proposed full eavesdropper

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4–5, 2009

Eve does not affect QKD performance

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Nat. Commun. 2, 349 (2011)

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| \le 2\sqrt{2}$

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011)

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| \le 2\sqrt{2}$

Passive basis choice: $|S| \le 4$, click probability = 100%Active basis choice: $|S| \le 4$, click probability = 50%

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011)

Controlling superconducting nanowire single-photon detectors

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, V. Makarov, New J. Phys. 13, 113042 (2011)

Countermeasures to detector attacks?

Countermeasures to detector attacks

***** ID Quantique: software-only, randomly varying detector sensitivity

M. Legre, G. Robordy, intl. patent appl. WO 2012/046135 A2 (filed in 2010)

★ Toshiba Cambridge: monitoring extra electrical parameters in detector

Z. L. Yuan, J. F. Dynes, A. J. Shields, Appl. Phys. Lett. 98, 231104 (2011)

★ U. of Toronto: entirely new scheme and protocol

H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

2009

2010

Responsible disclosure is important

Example: hacking commercial systems

ID Quantique got a detailed vulnerability report – reaction: requested time, developed a patch

MagiQ Technologies got a detailed vulnerability report – reaction: informed us that QPN 5505 is discontinued

Results presented orally at a scientific conference

Public disclosure in a journal paper

L. Lydersen et al., Nat. Photonics 4, 686 (2010)

Can we eavesdrop on commercial systems?

ID Quantique's Cerberis: Dual key agreement

Si APD PerkinElmer C30902SH

Damage and characterization setup

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, V. Makarov, unpublished

Test sequence

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, V. Makarov, unpublished

Region f: control a zombie

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, V. Makarov, *unpublished*

Bright field illumination

After 0.65 W

Bright field illumination

**

After 2 W

Bright field illumination

After 2 W

100 µm

After 3 W

500 µm

Dark field illumination

Reduction of dark count rate vs. illumination profile Spatial Temporal 50 µm FWHM 60 s 7 samples: DC / 1.7-5.4 **0.6 W** \uparrow 900 s 60 s \downarrow 900 s 1 sample: DC / 4.2 1 sample: DC / 2.5

Localized annealing? R. H. Haitz, J. Appl. Phys. 36, 3123 (1965)

Laser damage summary

Demonstrated controlled laser damage to a component of QKD scheme. New mode of attack!

Y PerkinElmer C30902SH Si APD:

- Changed V_{br} and photon detection efficiency
- Reduced dark count rate by a factor of 1.7–5.4, in all
 - 9 samples (patent pending)
- Permanently blind, bright-pulse control
- Permanently blind to all light
- Future studies should test other QKD components

Class 4 laser product

Quantum hacking lab www.vad1.com/lab

