Quantum cryptography

hacking lab

Quantum

Quantum Computing

nstitute *fo*1

l.com/lab

Vadim Makarov

Image from cover of Physics World, March 1998

Communication security you enjoy daily

Paying by credit card in a supermarket Cell phone conversations, SMS Email, chat, online calls Secure browsing, shopping online Cloud storage and communication between your devices Software updates on your computer, phone, tablet **Online banking Off-line banking: the** *bank* **needs to communicate internally** Electricity, water: the *utility* needs to communicate internally Car keys **Electronic door keys Government services (online or off-line)** Medical records at your doctor, hospital

Bypassing government surveillance and censorship

Encryption and key distribution

Quantum key distribution transmits secret key by sending quantum states over open channel.

Public key cryptography

E.g., RSA (Rivest-Shamir-Adleman) Elliptic-curve

Based on hypothesized one-way functions

Unexpected advances in classical cryptanalysis

Shor's factorization algorithm for quantum computer

P. W. Shor, SIAM J. Comput. 26, 1484 (1997)

Diagram courtesy M. Mosca

Encryption and key distribution

Quantum key distribution transmits secret key by sending quantum states over open channel.

Quantum key distribution (QKD)

Dealing with errors

Errors due to imperfections and Eve. Must assume that all errors are due to Eve!

- Error correction: standard classical protocols
- Privacy amplification:

Free-space QKD over 144 km

T. Schmitt-Manderbach et al., Phys. Rev. Lett. 98, 010504 (2007)

Alice: Polarized photon source

S. Nauerth et al., New J. Phys. 11, 065001 (2009)

Single-photon sources

Attenuated laser

Bob: Polarization analyzer with single-photon detectors

J. G. Rarity, P. C. M. Owens, P. R. Tapster, J. Mod. Opt. **41**, 2435 (1994)

Single-photon detectors

Photomultiplier tube

Avalanche photodiode

Images reprinted from: http://www.frankswebspace.org.uk/ScienceAndMaths/physics/physicsGCE/D1-5.htm; S. Cova et al., J. Mod. Opt. 51, 1267 (2004)

Single-photon detectors

Superconducting nanowire

	Section 1	al o bi compris, kin a	
THE REAL PROPERTY OF			Iμm

Images reprinted from: R. Sobolewski et al., IEEE Trans. Appl. Supercond. 13, 1151 (2003)

Transition-edge sensor

Images reprinted from: B. Cabrera et al., Appl. Phys. Lett. 73, 735 (1998); A.J. Miller et al., Appl. Phys. Lett. 83, 791 (2003)

Alice on La Palma

Photo © IQOQI Vienna

Bob on Tenerife

L. S.

Photo © IQOQI Vienna

Quantum teleportation over 143 km

Polarization encoding

Phase encoding, interferometric QKD channel

Detector bases:

 $\phi_A = -45^\circ \text{ or } +45^\circ : 0$ $\phi_A = +135^\circ \text{ or } -135^\circ : 1$

- $\varphi_{\rm B} = -45^{\circ} : X$
- $\varphi_{\rm B} = +45^{\circ}$: Z

Plug-and-play scheme

D. Stucki *et al.,* New J. Phys. **4**, 41 (2002)

ID Quantique Clavis2 QKD system

Photo ©2008 Vadim Makarov. Published with approval of ID Qiantique

Commercial QKD

Classical encryptors:

L2, 2 Gbit/s L2, 10 Gbit/s L3 VPN, 100 Mbit/s

Key manager

QKD to another node

QKD to another node

www.swissquantum.com ID Quantique Cerberis system (2010)

Trusted-node repeater

Trusted-node network

M. Sasaki et al., Opt. Express 19, 10387 (2011)

Video ©2012 IQC / group of T. Jennewein

Prototype single-photon detector (4-channel)

End of lecture 1

Quantum hacking

Security model of QKD

Quantum hacking

Video ©2011 Marc Weber Tobias

2

G (

6

True randomness?

True randomness?

Issue reported patched, as of January 2010

Do we trust the manufacturer?

Many components in QKD system can be Trojan-horsed:

- access to secret information
- electrical power
- way to communicate outside or compromise security

ID Quantique Clavis2 QKD system

Photo ©2008 Vadim Makarov. Published with approval of ID Qiantique

Quantis RNG: what's inside?

G. Ribordy, O. Guinnard, US patent appl. US 2007/0127718 A1 (filed in 2006) I. Radchenko *et al.,* unpublished

Double clicks

– occur naturally because of detector dark counts, multi-photon pulses... Discard them?

Intercept-resend attack... with a twist:

Proper treatment for double clicks: assign a random bit value.

N. Lütkenhaus, Phys. Rev. A **59**, 3301 (1999) T. Tsurumaru & K. Tamaki, Phys. Rev. A **78**, 032302 (2008)

Trojan-horse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Trojan-horse attack experiment

Artem Vakhitov tunes up Eve's setup

Trojan-horse attack for plug-and-play system

Eve gets back one photon \rightarrow in principle, extracts 100% information

N. Gisin et al., Phys. Rev. A 73, 022320 (2006)

Countermeasures?

D. Stucki et al., New J. Phys. 4, 41 (2002)

Countermeasures for plug-and-play system

S. Sajeed, I. Radchenko, S. Kaiser, J.-P. Bourgoin, L. Monat, M. Legré, V. Makarov, unpublished

Bob: none (one consequence: SARG protocol may be insecure)

N. Jain, E. Anisimova, I. Khan, V. Makarov, Ch. Marquardt, G. Leuchs, arXiv:1406.5813

Trojan-horse attack on Bob

N. Jain, E. Anisimova, I. Khan, V. Makarov, Ch. Marquardt, G. Leuchs, arXiv:1406.5813

Example of vulnerability and countermeasures

Photon-number-splitting attack

C. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, J. Cryptology 5, 3 (1992)

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000)

N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000)

S. Félix, N. Gisin, A. Stefanov, H. Zbinden, J. Mod. Opt. 48, 2009 (2001)

N. Lütkenhaus, M. Jahma, New J. Phys. 4, 44 (2002)

Decoy-state protocol

W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)

★ SARG04 protocol

V. Scarani, A. Acín, G. Ribordy, N. Gisin, Phys. Rev. Lett. 92, 057901 (2004)

Distributed-phase-reference protocols

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002)

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. A. 68, 022317 (2003)

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, V. Scarani, arXiv:quant-ph/0411022v1 (2004)

Attack	Target component	Tested system
Detector saturation H. Qin, R. Kumar, R. Alleaume, presentation at QCr	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Re	sync detector ev. A 87 , 062313 (2013)	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. I	intensity modulator Rev. A 86 , 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research syst.
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research syst.
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83	Faraday mirror 8, 062331 (2011)	(theory)
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Phys. 12 , 113026 (207	phase modulator	ID Quantique
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011) L. Lydersen <i>et al.,</i> Nat. Photonics 4 , 686 (2010)	single-photon detector	ID Quantique, MagiQ research syst.
Time-shift	single-photon detector	ID Quantique

Attack

Target component

Tested system

Detector saturation H. Qin, R. Kumar, R. Alleaume, presentation at QCry	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev	sync detector /. A 87, 062313 (2013)	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. R	intensity modulator ev. A 86, 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research syst.
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research syst.
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83,	Faraday mirror 062331 (2011)	(theory)
Phase-remapping F. Xu, B. Qi, HK. Lo, New J. Phys. 12 , 113026 (2010	phase modulator	ID Quantique
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011) L. Lydersen <i>et al.,</i> Nat. Photonics 4 , 686 (2010)	single-photon detector	ID Quantique, MagiQ, research syst.
Time-shift	single-photon detector	ID Quantique

Attack example: avalanche photodetectors (APDs)

Faked-state attack in APD linear mode

Classical post-processing

Blinding APD with bright light

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Photo ©2010 Vadim Makarov

Lars Lydersen testing MagiQ Technologies QPN 5505

Proposed full eavesdropper

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4–5, 2009

Entanglement-based QKD

M. P. Peloso et al., New J. Phys. 11, 045007 (2009)

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4–5, 2009

Eve does not affect QKD performance

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Nat. Commun. 2, 349 (2011)

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| < 2\sqrt{2}$

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011); N. Sultana, V. Makarov, unpublished

Faking violation of Bell inequality

CHSH inequality:
$$|S = E_{AB} + E_{A'B} + E_{AB'} - E_{A'B'}| \le 2$$

 $E \in [-1, 1]$
Entangled photons: $|S| < 2\sqrt{2}$

Passive basis choice: $|S| \le 4$, click probability = 100%Active basis choice: $|S| \le 2\sqrt{2}$ (4), click probability = 66.7% (50%)

I. Gerhardt, Q. Liu et al., Phys. Rev. Lett. 107, 170404 (2011); N. Sultana, V. Makarov, unpublished

Controlling superconducting nanowire single-photon detectors

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, V. Makarov, New J. Phys. **13**, 113042 (2011) M. G. Tanner, V. Makarov, R. H. Hadfield, arXiv:1305.5989

Countermeasures to detector attacks

Band-aid

0 0

★ Software patch to randomly vary detector sensitivity

M. Legre, G. Ribordy, intl. patent appl. WO 2012/046135 A2 (filed in 2010)

Monitoring extra electrical parameters in detector

Z. L. Yuan, J. F. Dynes, A. J. Shields, Appl. Phys. Lett. 98, 231104 (2011)

Integrated into ***** security model

Measurement-device-independent QKD

H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

2009

2010

Responsible disclosure is important

Example: hacking commercial systems

ID Quantique got a detailed vulnerability report reaction: requested time, developed a patch

M. Legre, G. Ribordy, intl. patent appl. WO 2012/046135 A2 (filed in 2010)

MagiQ Technologies got a detailed vulnerability report – reaction: informed us that QPN 5505 is discontinued

Results presented orally at a scientific conference

Public disclosure in a journal paper

L. Lydersen *et al.*, Nat. Photonics **4**, 686 (2010)

Can we eavesdrop on commercial systems?

ID Quantique's Cerberis: Dual key agreement

Some other topics in experimental quantum cryptography...

- Continuous-variable QKD
- Differential-phase-shift-keying protocols
- Quantum repeaters
- Device-independent QKD

Quantum cryptography is a viable complement to aging classical cryptography methods

Quantum cryptography has implementation imperfections, too, and the research community handles this problem successfully

