Vadim Makarov

CONTRACT SUCCESSION

~

T

T

0

at SHA2017, 4–8 August 2017

A (very) brief history of cryptography

Broken?

Monoalphabetic cipher	invented ~50 BC (J. Caesar)	~850 (Al-Kindi)
Nomenclators (code books)	~1400 - ~1800	\checkmark
Polyalphabetic (Vigenère)	1553 - ~1900	1863 (F. W. Kasiski)
Polyalphabetic electromechanical (Enigma, Purple, etc.)	1920s – 1970s	\checkmark
•••		
DES	1977 – 2005	1998: 56 h (EFF)
Public-key crypto (RSA, elliptic-curv	re) 1977 –	will be once we have q. computer (P. Shor 1994)
AES	2001 —	?
Public-key crypto ('quantum-safe')	in development	?

Breaking cryptography retroactively

Photo ©2013 AP / Rick Bowmer

Mosca theorem

Time

y (re-tool infrastructure)x (encryption needs be secure)z (time to build large quantum computer)

If x + y > z, then worry.

M. Mosca, http://eprint.iacr.org/2015/1075

A (very) brief history of cryptography

Broken?

Monoalphabetic cipher	invented ~50 BC (J. Caesar)	~850 (Al-Kindi)
Nomenclators (code books)	~1400 - ~1800	\checkmark
Polyalphabetic (Vigenère)	1553 - ~1900	1863 (F. W. Kasiski)
One-time pad	invented 1918 (G. Vernam)	impossible (C. Shannon 1949)
Polyalphabetic electromechanical (Enigma, Purple, etc.)	1920s – 1970s	\checkmark
•••		
DES	1977 – 2005	1998: 56 h (EFF)
Public-key crypto (RSA, elliptic-curv	ve) 1977 –	will be once we have q. computer (P. Shor 1994)
AES	2001 –	?
Quantum cryptography	invented 1984, in developmen	impossible *
Public-key crypto ('quantum-safe')	in development	?

One-time pad

A (very) brief history of cryptography

Broken?

Monoalphabetic cipher	invented ~50 BC (J. Caesar)	~850 (Al-Kindi)
Nomenclators (code books)	~1400 - ~1800	\checkmark
Polyalphabetic (Vigenère)	1553 - ~1900	1863 (F. W. Kasiski)
•••		
One-time pad	invented 1918 (G. Vernam)	impossible (C. Shannon 1949)
Polyalphabetic electromechanical (Enigma, Purple, etc.)	1920s – 1970s	\checkmark
•••		
DES	1977 – 2005	1998: 56 h (EFF)
Public-key crypto (RSA, elliptic-curv	r e) 1977 –	will be once we have q. computer (P. Shor 1994)
AES	2001 –	?
Quantum cryptography	invented 1984, in developmen	impossible*
Public-key crypto ('quantum-safe')	in development	?

Encryption and key distribution

Quantum key distribution transmits secret key by sending quantum states over open channel.

Quantum key distribution (QKD)

Alice

Prepares photons

$$(0), \qquad (1)$$

$$(0), \qquad (1)$$

Eavesdropping introduces errors

Measures photons

C. H. Bennett, G. Brassard (1984)

Commercial QKD

Classical encryptors:

L2, 2 Gbit/s L2, 10 Gbit/s L3 VPN, 100 Mbit/s

Key manager

QKD to another node (4 km)

QKD to another node

www.swissquantum.com ID Quantique Cerberis system (2010)

Trusted-node network

M. Sasaki et al., Opt. Express 19, 10387 (2011)

Quantum Backbone

- Total Length 2000 km
- 2013.6-2016.12
- 32 trustable relay nodes31 fiber links
- Metropolitan networks

 Existing: Hefei, Jinan
 New: Beijing, Shanghai

 Customer: China Industrial
 Commercial Bank; Xinhua
 News Agency; CBRC

Q. Zhang, talk at QCrypt 2014

Shanghai control center of the Chinese quantum key distribution network and satellite

Global quantum key distribution

Chinese quantum satellite (launched 2016)

Bell test over 1200 km Satellite-to-ground QKD at 1 kbit/s Quantum teleportation over 1400 km

J. Yin *et al.*, Science **356**, 1140 (2017)
S.-K. Liao *et al.*, arXiv:1707.00542
J.-G. Ren *et al.*, arXiv:1707.00934

QEYSSat (funded in April 2017)

Ground Station

Start

End

2 km

End

Lieu historique national du Blockhaus-de-Merrickville

Merrickville

7 km^{Island}traight-line

Start

C. J. Pugheet al., Quantum Sci. Technol. 2, 024009 (2017)

Pideau Rive

7 km straight-line

C. J. Pugh et al., Quantum Sci. Technol. 2, 024009 (2017)

Prototype single-photon detector (4-channel)

(top)

Proton irradiation facility at TRIUMF (Vancouver)

Excelitas SLiK

106 MeV protons

Excelitas C30921SH

Laser Components SAP500S2

Samples

os ©2014 Thomas Jennewein, Vadim Makarov

Radiation testing of Si avalanche photodiodes (APDs)

E. Anisimova et al., EPJ Quantum Technol. 4, 10 (2017)

Mitigation: laser annealing

. 106 MeV	Equivalent	Thermal	Dark cou	Annealing			
Sample ID	proton fluence (cm^{-2})	600 km polar orbit (months)	annealing procedure	Before (Hz)	Lowest after (Hz)	Highest reduction factor	power (W)
C30902SH-1	10 ⁹	6	None	347	2.3	150	0.8
C30902SH-2	10^{9}	6	None	363	2.64	137	1.5
SLiK-1	10 ⁸	0.6	2 h @ +100 °C	6.71	0.16	41.7	1.4
SLiK-2	10 ⁸	0.6	2 h @ +100 °C	2.19	0.42	5.3	0.8
SLiK-3	$4 imes 10^9$	24	4 h @ +80 °C, 2 h @ +100 °C	43.1	2.09	21	1.4
SLiK-4	10^9	6	None	192	8.3	23	1.0
SLiK-5	$4 imes 10^9$	24 (with bias voltage applied)	3 h @ +80 °C, 2 h @ +100 °C	447	58	7.7	1.0
SAP500S2-1	$4 imes 10^9$	24	4 h @ +80 °C, 2 h @ +100 °C	1579	2.08	758	1.4
SAP500S2-2	10 ⁸	0.6	2 h @ +100 °C	213	1.66	128	1.6

J. G. Lim et al., EPJ Quantum Technol. 4, 11 (2017)

Implementation security of quantum communications

physically secure, characteristics known physically secure, characteristics known

Kerckhoffs' principle:

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

A. Kerckhoffs, J. des Sciences Militaires 9, 5 (1883)

Everything about the system that is not explicitly secret is known to the enemy

Attack	Target component	Tested system
Intersymbol interference K. Yoshino <i>et al.,</i> poster at QCrypt (2016)	intensity modulator in Alice	research system
Laser damage V. Makarov <i>et al.,</i> Phys. Rev. A 94 , 030302 (2016)	any	ID Quantique, research system
Spatial efficiency mismatch M. Rau <i>et al.,</i> IEEE J. Quantum Electron. 21 , 6600905 (207	receiver optics 15); S. Sajeed <i>et al.,</i> Phys. Rev. A 91 ,	research system 062301 (2015)
Pulse energy calibration S. Sajeed <i>et al.,</i> Phys. Rev. A 91 , 032326 (2015)	classical watchdog detector	ID Quantique
Trojan-horse I. Khan <i>et al.,</i> presentation at QCrypt (2014)	phase modulator in Alice	SeQureNet
Trojan-horse N. Jain <i>et al.,</i> New J. Phys. 16 , 123030 (2014); S. Sajeed e	phase modulator in Bob et al., arXiv:1704.07749	ID Quantique
Detector saturation H. Qin, R. Kumar, R. Alleaume, Proc. SPIE 88990N (2013)	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev. A 87	classical sync detector , 062313 (2013)	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. Rev. A 3	intensity modulator 86, 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research system
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research system
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 0623	Faraday mirror	(theory)
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011); L. Lyderse	single-photon detector n <i>et al.,</i> Nat. Photonics 4 , 686 (2010)	ID Quantique, MagiQ, research system

Polarization receiver for satellite

C. J. Pugh et al., Quantum Sci. Technol. 2, 024009 (2017)

Polarization analyzer

Polarization analyzer

J.-P. Bourgoin *et al.,* Phys. Rev. A **92**, 052339 (2015)

Efficiency mismatch in polarization analyzer

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)

Counter-attack

V. Makarov et al., Phys. Rev. A 94, 030302 (2016)

Thorlabs P20S pinhole 13 µm thick stainless steel

3.6 W, 810 nm laser

0

1 mm

* Sound was added later

Thorlabs P20S pinhole 13 µm thick stainless steel

3.6 W, 810 nm laser

* Sound was added later

Security audit (informal) of industrial systems

NDA, full access to engineering documentation

Team of experts :) >

Stage I: Initial analysis of documentation

Stage II: Lab testing / follow-up

Goal: Identify all known potential vulnerabilities in optics and electronics

Example of initial analysis report (stage I)

TABLE I: Summary of potential security issues in			system.				
Potential security issue	С	Q	Target component	Brief description	Requirements for complete analysis	Lab testing needed	Risk evaluation
	CX	Q1 - 5,7			Complete circuit diagram of	Yes	High
	CX	Q1–3		See Ref. 3.	Complete circuit diagram of	Yes	High
	CX	Q1,2		See Ref. 4.	Complete circuit diagram of	Yes	High
	C0	Q2,3		Manufacturer needs to implement	Known issue. The manufacturer should patch it.	No	High
	CX	Q3-5,7			Known issue. The manufacturer should	No	Medium
	CX	Q1			Model numbers of all optical components; complete receiver for testing.	Yes	High
	CX	Q1–5			Complete circuit diagram of settings of	Yes	Insufficient information
	CX	Q1–3			Algorithm of	Yes	Low
	CX	Q1,2		See Ref. 13,	Model numbers of	Yes	Medium
	CX	Q4,5			Full system algorithms; complete system if decided to test.	Maybe	Low
	CX	Q1,3-5		Eve can	Algorithm for	Maybe	Low

Stepping stone to international security standards

Industry standards group in QKD. Open for anyone!

Dual key agreement

www.swissquantum.com ID Quantique *Cerberis* system (2010)

Credits

Labs of Thomas Jennewein, Norbert Lütkenhaus, Vadim Makarov

Photo ©2017 Vadim Makarov, Scott McManus / IQC

Quantum hacking lab

vad1.com/lab

Winter school on quantum cybersecurity

Next: 20–26 January 2018 Les Diablerets, Switzerland

2 days (executive track) + 4 days (technical track, with 3 labs)

Overview talks + quantum technologies, including QKD.

Lecturers change, in 2017 were: M. Afzelius, J. P. Aumasson, A. Ekert, M. Legré, V. Makarov,

C. Marquardt, M. Mosca, S. Popescu,R. Renner, G. Ribordy, C. William, H. Zbinden.20 students

€3200 full board (€1800 executive track only) nice, includes a brief skiing lesson, etc.

Organised by

QKD summer school

Next: August 2018 (TBC) Europe or Canada (TBC) 5 days of lectures

Mix of classical and quantum crypto. Lecturers: D. Jao, T. Jennewein, N. Lütkenhaus, V. Makarov, M. Mosca, R. Renner, D. Stinson. 60 students

\$600 including housing no frills!

Org. by

Institut Quant Compu